#219. 【NOI2016】优秀的拆分

题意:求有多少AABB样子的子串,拆分不同的同一个子串算多个


一开始一直想直接求,并不方便

然后看了一眼Claris的题解的第一行就有思路了

如果分开,求\(f[i]\)以i结尾AA形式子串和\(g[i]\)以i开始AA形式子串 就可以套路了

使用常用技巧,枚举\(L=|A|\),AA子串一定覆盖了两个关键点,枚举更新就行了,对于区间加可以使用差分

其实这道题很好拿95分啊,\(O(n^2)\)用哈希判断就行了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=3e4+5;
typedef long long ll;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
} int n, Log[N]; char s[N];
namespace ST {
void build(int f[N][16], int *a) {
for(int i=1; i<=n; i++) f[i][0]=a[i];
for(int j=1; j<15; j++)
for(int i=1; i+(1<<j)-1<=n; i++)
f[i][j] = min(f[i][j-1], f[i+(1<<(j-1))][j-1]);
}
}
struct SA {
int sa[N], t1[N], t2[N], c[N], rnk[N], hei[N], f[N][16];
inline bool cmp(int *r, int a, int b, int j) {
return a+j<=n && b+j<=n && r[a]==r[b] && r[a+j]==r[b+j];
}
void build(char *s, int m) {
int *r=t1, *k=t2;
for(int i=0; i<=m; i++) c[i]=0;
for(int i=1; i<=n; i++) c[r[i]=s[i]]++;
for(int i=1; i<=m; i++) c[i] += c[i-1];
for(int i=n; i>=1; i--) sa[ c[r[i]]-- ]=i; for(int j=1; j<=n; j<<=1) {
int p=0;
for(int i=n-j+1; i<=n; i++) k[++p]=i;
for(int i=1; i<=n; i++) if(sa[i]>j) k[++p]=sa[i]-j; for(int i=0; i<=m; i++) c[i]=0;
for(int i=1; i<=n; i++) c[r[k[i]]]++;
for(int i=1; i<=m; i++) c[i] += c[i-1];
for(int i=n; i>=1; i--) sa[ c[r[k[i]]]-- ]=k[i]; swap(r, k); p=0; r[sa[1]]=++p;
for(int i=2; i<=n; i++) r[sa[i]] = cmp(k, sa[i], sa[i-1], j) ? p : ++p;
if(p>=n) break; m=p;
} int now=0;
for(int i=1; i<=n; i++) rnk[sa[i]]=i;
for(int i=1; i<=n; i++) {
if(now) now--;
if(rnk[i]==1) continue;
int j=sa[rnk[i]-1];
while(i+now<=n && j+now<=n && s[i+now]==s[j+now]) now++;
hei[rnk[i]]=now;
} ST::build(f, hei);
}
int lcp(int x, int y) {
x=rnk[x], y=rnk[y];
if(x>y) swap(x, y); x++;
int t=Log[y-x+1];
return min(f[x][t], f[y-(1<<t)+1][t]);
}
}a, b;
inline int lcp(int x, int y) {return a.lcp(x, y);}
inline int lcs(int x, int y) {return b.lcp(n-x+1, n-y+1);}
int f[N], g[N];
inline void add(int *d, int l, int r) {d[l]++; d[r+1]--;}
void solve(int L) { //printf("\nsolve %d\n",L);
for(int i=1; i+L<=n; i+=L) {
int l = i - lcs(i, i+L) + 1, r = i + L + lcp(i, i+L) - 1;
l = max(l, i-L+1); r = min(r, i+L+L-1);
l = max(l, 1); r = min(r, n);
//printf("key %d %d [%d, %d]\n", i, i+L, l, r);
if(r-l+1 < 2*L) continue; add(f, l+2*L-1, r); add(g, l, r-2*L+1);
}
}
int main() {
freopen("in","r",stdin);
Log[1]=0; for(int i=2; i<N; i++) Log[i] = Log[i>>1]+1;
int T=read();
while(T--) {
scanf("%s", s+1); n=strlen(s+1);
a.build(s, 260); reverse(s+1, s+1+n); b.build(s, 260); reverse(s+1, s+1+n); for(int i=1; i<=n; i++) f[i]=g[i]=0;
//for(int i=1; i<=n; i++) for(int j=i; j<=n; j++) printf("lcs %d %d %d\n",i,j,lcs(i,j));
for(int i=1; i<=n; i++) solve(i);
ll ans=0;
for(int i=1; i<=n; i++) f[i]+=f[i-1], g[i]+=g[i-1];// printf("look %d %d %d\n",i,f[i],g[i]);
for(int i=2; i<n; i++) ans += (ll)f[i]*g[i+1];
printf("%lld\n", ans);
}
}

UOJ#219. 【NOI2016】优秀的拆分 [后缀数组 ST表]的更多相关文章

  1. UOJ#219/BZOJ4650 [NOI2016]优秀的拆分 字符串 SA ST表

    原文链接http://www.cnblogs.com/zhouzhendong/p/9025092.html 题目传送门 - UOJ#219 (推荐,题面清晰) 题目传送门 - BZOJ4650 题意 ...

  2. [NOI2016]优秀的拆分 后缀数组

    题面:洛谷 题解: 因为对于原串的每个长度不一定等于len的拆分而言,如果合法,它将只会被对应的子串统计贡献. 所以子串这个限制相当于是没有的. 所以我们只需要对于每个位置i求出f[i]表示以i为开头 ...

  3. UOJ #219 BZOJ 4650 luogu P1117 [NOI2016]优秀的拆分 (后缀数组、ST表)

    连NOI Day1T1都不会做...看了题解都写不出来还要抄Claris的代码.. 题目链接: (luogu)https://www.luogu.org/problemnew/show/P1117 ( ...

  4. BZOJ.4650.[NOI2016]优秀的拆分(后缀数组 思路)

    BZOJ 洛谷 令\(st[i]\)表示以\(i\)为开头有多少个\(AA\)这样的子串,\(ed[i]\)表示以\(i\)结尾有多少个\(AA\)这样的子串.那么\(Ans=\sum_{i=1}^{ ...

  5. BZOJ 4650 [Noi2016]优秀的拆分 ——后缀数组

    我们只需要统计在某一个点开始的形如$AA$字符串个数,和结束的个数相乘求和. 首先枚举循环节的长度L.即$\mid (A) \mid=L$ 然后肯定会经过s[i]和[i+L]至少两个点. 然后我们可以 ...

  6. SPOJ 687 Repeats(后缀数组+ST表)

    [题目链接] http://www.spoj.com/problems/REPEATS/en/ [题目大意] 求重复次数最多的连续重复子串的长度. [题解] 考虑错位匹配,设重复部分长度为l,记s[i ...

  7. POJ 3693 Maximum repetition substring(后缀数组+ST表)

    [题目链接] poj.org/problem?id=3693 [题目大意] 求一个串重复次数最多的连续重复子串并输出,要求字典序最小. [题解] 考虑错位匹配,设重复部分长度为l,记s[i]和s[i+ ...

  8. BZOJ_4516_[Sdoi2016]生成魔咒_后缀数组+ST表+splay

    BZOJ_4516_[Sdoi2016]生成魔咒_后缀数组+ST表+splay Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔 ...

  9. UVA10829 L-Gap Substrings(后缀数组+ST表)

    后缀数组+ST表. 代填的坑. \(Code\ Below:\) #include <bits/stdc++.h> #define ll long long using namespace ...

随机推荐

  1. 2017 CCPC 哈尔滨站 HDU 6242

    Geometry Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Other ...

  2. hdu_4463(最小生成树)

    hdu_4463(最小生成树) 标签: 并查集 题目链接 题意: 求一个必须包含一条路径的最小生成树 题解: 把那条边初始化成0 保证这条边一定会被选 #include<cstdio> # ...

  3. dijk

    .....................用矩阵存..................... 1 int mp[N][N]; bool p[N]; int dist[N]; void dijk(int ...

  4. ubuntu sendmail配置发送邮件

    ubuntu中sendmail函数可以很方便的发送邮件,ubuntu sendmail先要安装两个包. 必需安装的两个包: 代码  sudo apt-get install sendmail sudo ...

  5. 二 @ResponseBody用法

    @ResponseBody底层是通过response.getwriter()方法将数据写回前 台 @ResponseBody @RequestMapping (value="/queryLi ...

  6. mysql按照天统计报表,当天没有数据,填0

    1.问题复现: 按照天数统计每天的总数,如果其中有几天没有数据,那么group by 返回会忽略那几天,如何填充0?如下图,统计的10-3~10-10 7天的数据,其中只有8号和10号有数据,这样返回 ...

  7. Tomcat学习笔记(二)—— 一个简单的Servlet容器

    1.简介:Servlet编程是通过javax.Servlet和javax.servlet.http这两个包的类和接口实现的,其中javax.servlet.Servlet接口至关重要,所有的Servl ...

  8. Cannot declare class app\home\controller\Cases because the name is already in use

    Cannot declare class app\home\controller\Cases because the name is already in use 命名空间冲突了 use 模型类的时候 ...

  9. 基于Vue的小日历(支持按周切换)

      基于Vue的日历小功能,可根据实际开发情况按每年.每月.每周.进行切换 <template> <div class="date"> <!-- 年份 ...

  10. 修改ncnn的openmp异步处理方法 附C++样例代码

    ncnn刚发布不久,博主在ios下尝试编译. 遇上了openmp的编译问题. 寻找各种解决方案无果,亲自操刀. 采用std::thread 替换 openmp. ncnn项目地址: https://g ...