题解:

  首先用二进制表示每个音阶是否使用,那么共有$2^{n}-1$(空集不可行)种片段,用$a_{i}$来表示每个片段,问题就是求满足$a_{1}\left (xor\right)a_{2}\left (xor\right)......\left (xor\right)a_{m}==0\&\&a_{i}!=a_{j},1<=i<j<=m$的方案数,我们用$f_{i}$表示片段数为i时,且满足前面式子的答案。

  那么首先我们在选取i个片段时,必然是由前i-1个片段决定的,所以共有$A_{2^{n}-1}^{i-1}$种选取方案。其中若i-1个时已满足其异或和为0,那么此时是不合法的,所以需要减去$f_{i-1}$,考虑出现重复的情况,因为出现了重复,又有异或的逆运算就是本身,这也就意味着除去两个重复的片段的i-2个片段已经满足其异或和为0,而这个重复的片段在i-1个片段中的位置有i-1种,而这个重复的片段的值又可以在除去i-2个片段的集合中任意选取。

  所以得到递推式:

  $$f_{i}=A_{2^{n}-1}^{i-1}-f_{i-1}-f_{i-2}*(2^{n}-1-i+2)*(i-1)$$

  又由于不允许有重复,在最后除去$m!$即可。

 

 #include<cstdio>
typedef long long ll;
const ll mod=;
const int N=;
ll n,m;
ll powmod(ll a,ll b){
ll ans=;
a%=mod;
for(;b;b>>=,a=a*a%mod)
if(b&) ans=ans*a%mod;
return ans;
}
ll tot;
ll jie;
ll fac[N];
inline void init(){
fac[]=;
for(ll i=;i<=m;i++)
fac[i]=fac[i-]*(tot-i+)%mod;
} ll f[N];
int main(){
scanf("%lld%lld",&n,&m);
tot=powmod(2LL,n);
tot--;
if(tot<) tot+=mod;
init();
for(ll i=;i<=m;i++){
f[i]=(fac[i-]-f[i-])%mod-f[i-]*(i-)%mod*(tot-i+)%mod;
f[i]%=mod;
}
ll tt=;
for(ll i=;i<=m;++i)
tt=tt*i%mod;
tt=powmod(tt,mod-);
printf("%lld\n",(f[m]*tt%mod+mod)%mod);
}

【BZOJ2339】【HNOI2011】卡农的更多相关文章

  1. [BZOJ2339][HNOI2011]卡农

    [BZOJ2339][HNOI2011]卡农 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见& ...

  2. bzoj2339[HNOI2011]卡农 dp+容斥

    2339: [HNOI2011]卡农 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 842  Solved: 510[Submit][Status][ ...

  3. BZOJ2339[HNOI2011]卡农——递推+组合数

    题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...

  4. BZOJ2339 HNOI2011卡农(动态规划+组合数学)

    考虑有序选择各子集,最后除以m!即可.设f[i]为选i个子集的合法方案数. 对f[i]考虑容斥,先只满足所有元素出现次数为偶数.确定前i-1个子集后第i个子集是确定的,那么方案数为A(2n-1,i-1 ...

  5. 【BZOJ2339】[HNOI2011]卡农 组合数+容斥

    [BZOJ2339][HNOI2011]卡农 题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可. 考虑DP.如果我们已经知道了前m-1个集合,那么第m个集合已经是确 ...

  6. 【BZOJ2339】卡农(递推,容斥)

    [BZOJ2339]卡农(递推,容斥) 题面 BZOJ 题解 先简化一下题意: 在\([1,2^n-1]\)中选择不重复的\(m\)个数,使得他们异或和为\(0\)的方案数. 我们设\(f[i]\)表 ...

  7. P3214 [HNOI2011]卡农

    题目 P3214 [HNOI2011]卡农 在被一题容斥\(dp\)完虐之后,打算做一做集合容斥这类的题了 第一次深感HNOI的毒瘤(题做得太少了!!) 做法 求\([1,n]\)组成的集合中选\(m ...

  8. [HNOI2011]卡农

    题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...

  9. [HNOI2011]卡农 题解

    题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...

  10. [HNOI2011]卡农 (数论计数,DP)

    题面 原题面 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则. 他将声音分成 n n n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 1 1 ...

随机推荐

  1. Srping mvc mabatis 报错 org.apache.ibatis.binding.BindingException: Invalid bound statement (not found):

    我的Mapper采用接口+注解的方式注入 @Repository(value="customerServOutCallMapper")public interface Custom ...

  2. 简单工厂,Factory Method(工厂方法)和Abstract Factory(抽象工厂)模式

    对于简单工厂来说,它的工厂只能是这个样子的 public class SimplyFactory {  /** * 静态工厂方法 */ public static Prouct factory(Str ...

  3. async/await 的基本实现和 .NET Core 2.1 中相关性能提升

    前言 这篇文章的开头,笔者想多说两句,不过也是为了以后再也不多嘴这样的话. 在日常工作中,笔者接触得最多的开发工作仍然是在 .NET Core 平台上,当然因为团队领导的开放性和团队风格的多样性(这和 ...

  4. truffle 安装以及基本指令

    1. linux下安装方式 $ npm install -g truffle 环境要求: NodeJS 5.0+ Windows,Linux,或Mac OS X 2. 创建工程: $ mkdir te ...

  5. windows xp + mysql5.5 + phpmyadmin insert 中文繁體

    windows xp + mysql5.5 + phpmyadmin insert 中文繁體 今天也發生了,無法insert成功的問題: 在phpmyadmin 或doc下連接mysql執行都不行: ...

  6. php中的抽象方法和抽象类,简单明了,一点通

    1.什么是抽象方法?    我们在类里面定义的没有方法提的方法就是抽象方法.所谓的没有方法体指的是,在声明的时候没有大括号以及其中的内容,而是直接在声明时在方法名后加上分号结束,另外在声明抽象方法时方 ...

  7. ambari安装集群下安装kafka manager

    简介: 不想通过kafka shell来管理kafka已创建的topic信息,想通过管理页面来统一管理和查看kafka集群.所以选择了大部分人使用的kafka manager,我一共有一台主机mast ...

  8. 论文笔记(1):Deep Learning.

    论文笔记1:Deep Learning         2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature ...

  9. 安装RabbitMQ编译erlang时,checking for c compiler default output file name... configure:error:C compiler cannot create executables See 'config.log' for more details.

    checking for c compiler default output file name... configure:error:C compiler cannot create executa ...

  10. 函数上下文this

    一般来说谁调用上下文都指向谁,具体有以下几种情况: 1.函数用圆括号调用,函数的上下文是window 注意:所有的全局变量都是window的属性,而函数里边定义的变量谁的属性也不是. 2.函数作为对象 ...