莫比乌斯函数&莫比乌斯反演
莫比乌斯函数:http://wenku.baidu.com/view/fbec9c63ba1aa8114431d9ac.html
Orz PoPoQQQ
这个证明过程第三步和第四步一开始没看懂……
第三步:观察计算左边f(k)的系数,可以看出只要d不大于n/k均可以使μ(d)成为f(k)的系数,那么f(k)的系数就是sigma[d丨(n/k)] μ(d) (方括号内为d的范围)
利用整除的性质,重新组合了一下这几项,相当于对一个多项式重新分组提取因式什么的……
第四步:利用sigma μ(d)=1或0 那个性质一:当k小于n时,f(k)的系数为0;当k=n时,为1。证毕QAQ
向JZJ大神致敬!
莫比乌斯反演:
对于一些函数f(n),如果我们很难直接求出它的值,而容易求出倍数和或约数和F(n),那么我们可以通过莫比乌斯反演来求得f(n)的值
例:f(n)表示某一范围内(x,y)=n的数对的数量,F(n)表示某一范围内n|(x,y)的数对的数量
那么直接求f(n)并不是很好求,而F(n)求起来相对无脑一些,我们可以通过对F(n)进行莫比乌斯反演来求得f(n)
例题:
莫比乌斯函数&莫比乌斯反演的更多相关文章
- hdu 1965 (莫比乌斯函数 莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- BZOJ 2440 莫比乌斯函数+容斥+二分
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 5473 Solved: 2679[Submit][Sta ...
- 51nod 1240 莫比乌斯函数
题目链接:51nod 1240 莫比乌斯函数 莫比乌斯函数学习参考博客:http://www.cnblogs.com/Milkor/p/4464515.html #include<cstdio& ...
- UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)
UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...
- 【bzoj4804】欧拉心算 莫比乌斯反演+莫比乌斯函数性质+线性筛
Description 给出一个数字N 求\(\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(gcd(i,j))\) Input 第一行为一个正整数T,表示数据组数. 接下来T ...
- 【bzoj3601】一个人的数论 莫比乌斯反演+莫比乌斯函数性质+高斯消元
Description Sol 这题好难啊QAQ 反正不看题解我对自然数幂求和那里是一点思路都没有qwq 先推出一个可做一点的式子: \(f(n)=\sum_{k=1}^{n}[(n,k)=1]k^d ...
- 莫比乌斯函数 && HDU-1695
莫比乌斯函数定义: $$\mu(d)=\begin{cases}1 &\text{d = 1}\\(-1)^r &\text{$d=p_1p_2...p_r,其中p_i为不同的素数$} ...
- 由 [SDOI2012]Longge的问题 探讨欧拉函数和莫比乌斯函数的一些性质和关联
本题题解 题目传送门:https://www.luogu.org/problem/P2303 给定一个整数\(n\),求 \[ \sum_{i=1}^n \gcd(n,i) \] 蒟蒻随便yy了一下搞 ...
- [Luogu P2257] YY的GCD (莫比乌斯函数)
题面 传送门:洛咕 Solution 推到自闭,我好菜啊 显然,这题让我们求: \(\large \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prime]\) 根 ...
随机推荐
- Mongodb C#客户端数据关联数据,使用Linq语法进行关联
在Mongodb C# drivers 文档 官方地址:https://docs.mongodb.com/ecosystem/drivers/csharp/ 基础的使用请参考<c# Mongod ...
- Code First 数据库迁移
当 Entity Framework Code First 的数据模型发生改变时,默认会引发一个System.InvalidOperationException 的异常.解决方法是使用DropCrea ...
- jquery 查询IP归属地
<script src="http://c.csdnimg.cn/public/common/libs/jquery/jquery-1.9.1.min.js" type=&q ...
- poj2387- Til the Cows Come Home(最短路)
此为转载:http://blog.csdn.net/wangjian8006: 题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 解题思路: 模版题,这题要 ...
- Graphviz 在 Windows 10 下 的 安装 Bug 解决方案
报错: 解决方法: 参考:stackoverflow
- UVa210 Concurrency Simulator (ACM/ICPC World Finals 1991) 双端队列
Programs executed concurrently on a uniprocessor system appear to be executed at the same time, but ...
- 那些年我们爬过的山 - mybatis批量导入
[原创作品,转载请注明出处] 写这篇文章之前想着给这篇博客起一个文艺一点的标题,思来想去,想到了那些年我们爬过的山,或者我们一起趟过的河?代码不规范,同事两行泪,这是多么痛的领悟啊! 背景 本组一名实 ...
- JAVAEE——SSH项目实战06:统计信息管理、Spring注解开发和EasyUI
作者: kent鹏 转载请注明出处: http://www.cnblogs.com/xieyupeng/p/7190925.html 一.统计信息管理 二.Spring注解开发 1.service ...
- #pragma region、{}
定义一个region,这个region内部的代码你可以把它折叠起来是用于组织代码的,没有其他特别重要的意义. 而{}定义了作用域 { int a = 0; } { int a = 0; }
- Codeforces.809E.Surprise me!(莫比乌斯反演 虚树)
题目链接 \(Description\) 给定一棵树,求\[\frac{1}{n(n-1)/2}\times\sum_{i\in[1,n],j\in[1,n],i\neq j}\varphi(a_i\ ...