题目大意:
  给你一个数字串s,一个序列范围l和r,(l和r的数字位数为d)求l到r中有多少个数,满足它的长度为d/2的子串,能够在s中被匹配。

思路:
  首先将s中每一个长度为d/2的子串插入后缀自动机。
  然后数位DP。
  f[i][j]中第一维表示当前树与l和r的关系,包含四个状态,用二进制表示,每一位对应与l和r的不同关系。
  第二维表示当前状态下每个结点匹配到的数的个数。
  每一个数位的状态由上一个数位转移而来,我们用两个DP数组f和g滚动实现。
  用o表示当前枚举的数字,用to表示数字所对应的第一维的状态,则转移方程为f[to[o]][p]=sum(f[j][par[p]])
  然而一开始写AC自动机用的是指针,然后又是各种不方便,所以又用vector很粗糙地实现了结点的遍历。故常数巨大。

 #pragma GCC optimize("O3")
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
const int mod=1e9+;
const int N=,D=;
char s[N],l[D],r[D];
int n,d;
class AhoCorasickAutomaton {
private:
static const int SIGMA_SIZE=;
struct Node {
Node *ch[SIGMA_SIZE],*fail;
bool isEnd;
int id;
Node(const int i) {
memset(ch,,sizeof ch);
fail=NULL;
isEnd=false;
id=i;
}
};
Node *root;
std::vector<Node*> v;
int idx(const char ch) {
return ch-'';
}
int f[][N*D>>],g[][N*D>>];
//第一维表示与l和r的关系
public:
AhoCorasickAutomaton() {
root=new Node(v.size());
v.push_back(root);
}
void insert(char s[],const int len) {
Node *p=root;
for(int i=;i<len;i++) {
const int w=idx(s[i]);
if(!p->ch[w]) {
p->ch[w]=new Node(v.size());
v.push_back(p->ch[w]);
}
p=p->ch[w];
}
p->isEnd=true;
}
void getFail() {
std::queue<Node*> q;
root->fail=root;
for(int i=;i<SIGMA_SIZE;i++) {
if(root->ch[i]) {
root->ch[i]->fail=root;
q.push(root->ch[i]);
} else {
root->ch[i]=root;
}
}
while(!q.empty()) {
Node *p=q.front();
q.pop();
for(int i=;i<SIGMA_SIZE;i++) {
if(p->ch[i]) {
p->ch[i]->fail=p->fail->ch[i];
q.push(p->ch[i]);
} else {
p->ch[i]=p->fail->ch[i];
}
}
}
Node *end=new Node(v.size());
for(unsigned i=;i<v.size();i++) {
Node *p=v[i];
for(int i=;i<SIGMA_SIZE;i++) {
if(p->ch[i]->isEnd) {
p->ch[i]=end;
}
}
}
for(int i=;i<SIGMA_SIZE;i++) {
end->ch[i]=end;
}
v.push_back(end);
}
int dp() {
g[][]=;
int to[];
for(int i=;i<d;i++) {
for(int i=;i<;i++) {
for(unsigned j=;j<v.size();j++) {
f[i][j]=;
}
}
for(int j=;j<;j++) {
int st=(j&)?:idx(l[i]),en=(j>)?:idx(r[i]);//确定当前数位数字的上下界
for(int i=st;i<=en;i++) to[i]=0b11;//默认是在l和r之间
if(~j&) to[st]&=0b10;//如果比l小
if(j<) to[en]&=0b01;//如果比r大
//用&是因为有可能st=en
for(unsigned k=;k<v.size();k++) {
if(!g[j][k]) continue;
for(int o=st;o<=en;o++) {//在当前数位的范围寻找子结点
(f[to[o]][v[k]->ch[o]->id]+=g[j][k])%=mod;
}
}
}
std::swap(f,g);
}
int ret=;
for(int i=;i<;i++) {
ret=(ret+g[i][v.size()-])%mod;
}
return ret;
}
};
AhoCorasickAutomaton acam;
int main() {
scanf("%s%s%s",s,l,r);
n=strlen(s),d=strlen(l);
for(int i=;i<=n-d/;i++) {
acam.insert(&s[i],d/);
}
acam.getFail();
printf("%d\n",acam.dp());
return ;
}

[CodeForces-585F]Digits of Number Pi的更多相关文章

  1. CF585F Digits of Number Pi

    题目 把\(s\)串所有长度为\(\lfloor \frac{d}{2}\rfloor\)的子串插入一个ACAM中,之后数位dp就好了,状态是\(dp_{i,j,0/1}\)第\(i\)位,在ACAM ...

  2. 题解 CF585F 【Digits of Number Pi】

    考虑用数位 \(DP\) 来统计数字串个数,用 \(SAM\) 来实现子串的匹配. 设状态 \(f(pos,cur,lenth,lim,flag)\),表示数位的位数,在 \(SAM\) 上的节点,匹 ...

  3. codeforces 464C. Substitutes in Number

    题目链接 C. Substitutes in Number time limit per test 1 second memory limit per test 256 megabytes input ...

  4. 【codeforces 805D】Minimum number of steps

    [题目链接]:http://codeforces.com/contest/805/problem/D [题意] 给你一个字符串; 里面只包括a和b; 让你把里面的"ab"子串全都去 ...

  5. Codeforces C. Split a Number(贪心大数运算)

    题目描述: time limit per test 2 seconds memory limit per test 512 megabytes input standard input output ...

  6. dp --- Codeforces 245H :Queries for Number of Palindromes

    Queries for Number of Palindromes Problem's Link:   http://codeforces.com/problemset/problem/245/H M ...

  7. Codeforces 279D The Minimum Number of Variables 状压dp

    The Minimum Number of Variables 我们定义dp[ i ][ mask ]表示是否存在 处理完前 i 个a, b中存者 a存在的状态是mask 的情况. 然后用sosdp处 ...

  8. Educational Codeforces Round 11 D. Number of Parallelograms 暴力

    D. Number of Parallelograms 题目连接: http://www.codeforces.com/contest/660/problem/D Description You ar ...

  9. Codeforces 980 E. The Number Games

    \(>Codeforces \space 980 E. The Number Games<\) 题目大意 : 有一棵点数为 \(n\) 的数,第 \(i\) 个点的点权是 \(2^i\) ...

随机推荐

  1. Java枚举类型的用法

    JDK1.5引入了新的类型——枚举.在 Java 中它虽然算个“小”功能,却给我的开发带来了“大”方便. 1.用法一:常量 在JDK1.5 之前,我们定义常量都是: public static fia ...

  2. 使用java8的StreamAPI对集合计算进行代码重构

    方法: 查询出所有部门成员中年龄大于30的员工姓名 部门对象: 员工对象: 模拟数据: private static List<Dept> list=new ArrayList<De ...

  3. 如何提高单片机Flash的擦写次数

    所谓提高flash的擦写次数,并不是真正的提高flash擦写次数,而是通过以"空间换时间"概念,在软件上实现“操作的次数大于其寿命”.详见链接: http://bbs.eeworl ...

  4. 关于分布式存储系统中-CAP原则(CAP定理)与BASE理论比较

    CAP原则又称CAP定理,指的是在一个分布式系统中, Consistency(一致性). Availability(可用性).Partition tolerance(分区容错性),三者不可得兼. CA ...

  5. maven2 up to maven3的'version' contains an expression but should be a constant

    在Maven2时,为了保障版本一致,一般之前我们的做法时: Parent Pom中 <project xmlns="http://maven.apache.org/POM/4.0.0& ...

  6. linux limits研究

    ---------------------------------------------------------------------------------------------------- ...

  7. Scrapy:运行爬虫程序的方式

    Windows 10家庭中文版,Python 3.6.4,Scrapy 1.5.0, 在创建了爬虫程序后,就可以运行爬虫程序了.Scrapy中介绍了几种运行爬虫程序的方式,列举如下: -命令行工具之s ...

  8. Python基础:获取平台相关信息

    Windows 10家庭中文版,Python 3.6.4, 本文介绍了使用os.platform.sys三个模块获取Python程序的运行平台相关的信息. os模块:提供 各种各样的操作系统接口 os ...

  9. fsevents npm install是报错

    npm install 安装插件的时候,fsevents报错,这是node 8.x版本的问题,解决办法,把node 版本切换到6.x

  10. 如何从TFS(Visual Studio Team Foundation Server)映射下载本地文件夹

    1.连接tfs项目 首先打开vs2017 ——>工具栏 中的   团队——> 选择团队的管理链接 2.选择管理工作区 显示管理工作区的弹窗,点击 编辑  显示弹窗,选择本地文件夹(即要保存 ...