题目大意:
  给你一个数字串s,一个序列范围l和r,(l和r的数字位数为d)求l到r中有多少个数,满足它的长度为d/2的子串,能够在s中被匹配。

思路:
  首先将s中每一个长度为d/2的子串插入后缀自动机。
  然后数位DP。
  f[i][j]中第一维表示当前树与l和r的关系,包含四个状态,用二进制表示,每一位对应与l和r的不同关系。
  第二维表示当前状态下每个结点匹配到的数的个数。
  每一个数位的状态由上一个数位转移而来,我们用两个DP数组f和g滚动实现。
  用o表示当前枚举的数字,用to表示数字所对应的第一维的状态,则转移方程为f[to[o]][p]=sum(f[j][par[p]])
  然而一开始写AC自动机用的是指针,然后又是各种不方便,所以又用vector很粗糙地实现了结点的遍历。故常数巨大。

 #pragma GCC optimize("O3")
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
const int mod=1e9+;
const int N=,D=;
char s[N],l[D],r[D];
int n,d;
class AhoCorasickAutomaton {
private:
static const int SIGMA_SIZE=;
struct Node {
Node *ch[SIGMA_SIZE],*fail;
bool isEnd;
int id;
Node(const int i) {
memset(ch,,sizeof ch);
fail=NULL;
isEnd=false;
id=i;
}
};
Node *root;
std::vector<Node*> v;
int idx(const char ch) {
return ch-'';
}
int f[][N*D>>],g[][N*D>>];
//第一维表示与l和r的关系
public:
AhoCorasickAutomaton() {
root=new Node(v.size());
v.push_back(root);
}
void insert(char s[],const int len) {
Node *p=root;
for(int i=;i<len;i++) {
const int w=idx(s[i]);
if(!p->ch[w]) {
p->ch[w]=new Node(v.size());
v.push_back(p->ch[w]);
}
p=p->ch[w];
}
p->isEnd=true;
}
void getFail() {
std::queue<Node*> q;
root->fail=root;
for(int i=;i<SIGMA_SIZE;i++) {
if(root->ch[i]) {
root->ch[i]->fail=root;
q.push(root->ch[i]);
} else {
root->ch[i]=root;
}
}
while(!q.empty()) {
Node *p=q.front();
q.pop();
for(int i=;i<SIGMA_SIZE;i++) {
if(p->ch[i]) {
p->ch[i]->fail=p->fail->ch[i];
q.push(p->ch[i]);
} else {
p->ch[i]=p->fail->ch[i];
}
}
}
Node *end=new Node(v.size());
for(unsigned i=;i<v.size();i++) {
Node *p=v[i];
for(int i=;i<SIGMA_SIZE;i++) {
if(p->ch[i]->isEnd) {
p->ch[i]=end;
}
}
}
for(int i=;i<SIGMA_SIZE;i++) {
end->ch[i]=end;
}
v.push_back(end);
}
int dp() {
g[][]=;
int to[];
for(int i=;i<d;i++) {
for(int i=;i<;i++) {
for(unsigned j=;j<v.size();j++) {
f[i][j]=;
}
}
for(int j=;j<;j++) {
int st=(j&)?:idx(l[i]),en=(j>)?:idx(r[i]);//确定当前数位数字的上下界
for(int i=st;i<=en;i++) to[i]=0b11;//默认是在l和r之间
if(~j&) to[st]&=0b10;//如果比l小
if(j<) to[en]&=0b01;//如果比r大
//用&是因为有可能st=en
for(unsigned k=;k<v.size();k++) {
if(!g[j][k]) continue;
for(int o=st;o<=en;o++) {//在当前数位的范围寻找子结点
(f[to[o]][v[k]->ch[o]->id]+=g[j][k])%=mod;
}
}
}
std::swap(f,g);
}
int ret=;
for(int i=;i<;i++) {
ret=(ret+g[i][v.size()-])%mod;
}
return ret;
}
};
AhoCorasickAutomaton acam;
int main() {
scanf("%s%s%s",s,l,r);
n=strlen(s),d=strlen(l);
for(int i=;i<=n-d/;i++) {
acam.insert(&s[i],d/);
}
acam.getFail();
printf("%d\n",acam.dp());
return ;
}

[CodeForces-585F]Digits of Number Pi的更多相关文章

  1. CF585F Digits of Number Pi

    题目 把\(s\)串所有长度为\(\lfloor \frac{d}{2}\rfloor\)的子串插入一个ACAM中,之后数位dp就好了,状态是\(dp_{i,j,0/1}\)第\(i\)位,在ACAM ...

  2. 题解 CF585F 【Digits of Number Pi】

    考虑用数位 \(DP\) 来统计数字串个数,用 \(SAM\) 来实现子串的匹配. 设状态 \(f(pos,cur,lenth,lim,flag)\),表示数位的位数,在 \(SAM\) 上的节点,匹 ...

  3. codeforces 464C. Substitutes in Number

    题目链接 C. Substitutes in Number time limit per test 1 second memory limit per test 256 megabytes input ...

  4. 【codeforces 805D】Minimum number of steps

    [题目链接]:http://codeforces.com/contest/805/problem/D [题意] 给你一个字符串; 里面只包括a和b; 让你把里面的"ab"子串全都去 ...

  5. Codeforces C. Split a Number(贪心大数运算)

    题目描述: time limit per test 2 seconds memory limit per test 512 megabytes input standard input output ...

  6. dp --- Codeforces 245H :Queries for Number of Palindromes

    Queries for Number of Palindromes Problem's Link:   http://codeforces.com/problemset/problem/245/H M ...

  7. Codeforces 279D The Minimum Number of Variables 状压dp

    The Minimum Number of Variables 我们定义dp[ i ][ mask ]表示是否存在 处理完前 i 个a, b中存者 a存在的状态是mask 的情况. 然后用sosdp处 ...

  8. Educational Codeforces Round 11 D. Number of Parallelograms 暴力

    D. Number of Parallelograms 题目连接: http://www.codeforces.com/contest/660/problem/D Description You ar ...

  9. Codeforces 980 E. The Number Games

    \(>Codeforces \space 980 E. The Number Games<\) 题目大意 : 有一棵点数为 \(n\) 的数,第 \(i\) 个点的点权是 \(2^i\) ...

随机推荐

  1. 10种CSS3实现的Loading效果

    原文链接:http://www.cnblogs.com/jr1993/p/4622039.html 第一种效果: 代码如下: <div class="loading"> ...

  2. css单行文本和多行文本溢出实现省略号显示

    1.单行文本溢出 文本内容 <div class="singleLine"> HelloWorldHelloWorldHelloWorldHelloWorldHello ...

  3. Hibernate5笔记1--Hibernate简介和第一个程序

    Hibernate简介: Hibernate是一个开放源代码的ORM(对象关系映射)框架,它对JDBC进行了非常轻量级的对象封装,使得Java程序员可以随心所欲的使用对象编程思维来操纵数据库. Hib ...

  4. no libsigar-amd64-linux.so in java.library.path 解决方法

    关于sigar的介绍可以参考这边博文 :https://www.cnblogs.com/luoruiyuan/p/5603771.html 在Linux上运行java程序时出现 no libsigar ...

  5. linux安装python3(已有python2.x情况下)

    参考:https://www.cnblogs.com/Guido-admirers/p/6259410.html 1.官网下载python3 cd /home/download wget https: ...

  6. java基础76 web服务器之Tomcat服务器

    (注:本文是以“压缩版Tomcat”为例,展开描述的) 一.Tomcat服务器的介绍 1.服务器 1.1.服务器的种类 从物理上讲:服务器就是一台pc机器.至少8核/8G以上.内存至少用T来计算.宽带 ...

  7. 错误/异常:The project cannot be built until build path errors are resolved 和 Unbound classpath container: 'JRE System Library [JavaSE-1.7]' in project 'MyJavaCode';的解决方法

    错误1: The project cannot be built until build path errors are resolved 解决方法: 把java的类库加载进去即可,在工程上右键 选择 ...

  8. linux 安装 Elasticsearch6.4.0详细步骤以及问题解决方案

    1.jdk 安装 参考资料:https://www.cnblogs.com/shihaiming/p/5809553.html 2.elasticsearch 安装 下载:https://artifa ...

  9. P2448 无尽的生命

    Description 小 a有一个长度无限长的序列 p = (1, 2, 3, 4 --),初始时 pi = i 给出 m 个操作,每次交换两个位置的数 询问最后序列逆序对的个数 Solution ...

  10. 首次加载进来DEV控件列表第一行颜色总是不对,后台代码显示的数据正确

    1:行改变的颜色正确的颜色: 1.1颜色效果如下图: 1.2:设置行改变颜色: 2:结果首次加载第一行颜色为: 3:解决方案: 3.1 :Views-->OptionsSelection --& ...