以下为摘要

区间dp能解决的问题就是通过小区间更新大区间,最后得出指定区间的最优解

个人认为,想要用区间dp解决问题,首先要确定一个大问题能够剖分成几个相同较小问题,且小问题很容易组合成大问题,从而从解决小问题逐渐解决大问题,体现的其实是分治的思想,只不过是通过dp用递推的方式解决了。比如floyd现在看来也属于区间dp 的一种。


然后是自己的理解及几个例子

区间DP,思路在于由小区间刷新大区间,具体做法是:

  1. 最外层循环枚举区间长度(从小到大,先计算小区间来刷新大区间)

  2. 第二层枚举大区间起点i

  3. 依据起点和长度计算终点j

  4. 第三层循环在i与j中枚举k,即为把大区间分为两个小区间的断点

  5. 依题意计算,取较大值刷新大区间

以下是几个例子:

P1063 能量项链

    for(int len = 2;len <= num + 1;len++){
for(int i = 1;i + len - 1 <= 2 * num/*j不能超过总数*/;i++){
int j = i + len - 1;
//dp[i][j] = 0;
for(int k = i + 1;k < j;k++){
dp[i][j] = max(dp[i][j],dp[i][k] + dp[k][j] + a[i] * a[k] * a[j]);
}
}
}

P1880 石子合并

    for(int len = 2;len <= num;len++){
for(int i = 1;i <= num * 2 - (len - 1);i++){
int j = i + len - 1;
d1[i][j] = 0;
d2[i][j] = 99999999;
for(int k = i;k < j;k++){
//cout<<d2[i][k] + d2[k + 1][j] + mmp[i][j]<<endl;
d1[i][j] = max(d1[i][j],d1[i][k] + d1[k + 1][j] + mmp[i][j]);
d2[i][j] = min(d2[i][j],d2[i][k] + d2[k + 1][j] + mmp[i][j]);
}
}
}

P2904 [USACO08MAR]跨河(这个有区间DP思想,但方法步骤不同)

    dp[0] = 0;
for(int i = 1;i <= num;i++){
for(int j = 1;j <= i;j++){
//cout<<"i= "<<i<<endl;
//cout<<dp[i]<<" "<<dp[i - j] + tim[j]<<endl;
dp[i] = min(dp[i],dp[i - j] + tim[j]);//分为j和i-j两部分,螺旋枚举,找最小;
}
}
具体代码参见测评记录

区间DP的思路(摘自NewErA)及自己的心得的更多相关文章

  1. HDU 4632 Palindrome subsequence & FJUT3681 回文子序列种类数(回文子序列个数/回文子序列种数 容斥 + 区间DP)题解

    题意1:问你一个串有几个不连续子序列(相同字母不同位置视为两个) 题意2:问你一个串有几种不连续子序列(相同字母不同位置视为一个,空串视为一个子序列) 思路1:由容斥可知当两个边界字母相同时 dp[i ...

  2. BZOJ 4380 Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  3. Pangu and Stones(HihoCoder-1636)(17北京OL)【区间DP】

    题意:有n堆石头,盘古每次可以选择连续的x堆合并,所需时间为x堆石头的数量之和,x∈[l,r],现在要求,能否将石头合并成一堆,如果能,最短时间是多少. 思路:(参考了ACM算法日常)DP[i][j] ...

  4. 【P1588】丢失的牛——区间dp/bfs

    (题面来自Luogu) 题目描述 FJ丢失了他的一头牛,他决定追回他的牛.已知FJ和牛在一条直线上,初始位置分别为x和y,假定牛在原地不动.FJ的行走方式很特别:他每一次可以前进一步.后退一步或者直接 ...

  5. 浅谈区间DP的解题时常见思路

    一.区间DP解题时常见思路 如果题目中答案满足: 大的区间的答案可以由小的区间答案组合或加减得到 大的范围可以由小的范围代表 数据范围较小 我们这时可以考虑采用区间DP来解决. 那么常见的解法有两种: ...

  6. hdu 5181 numbers——思路+区间DP

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5181 题解:https://www.cnblogs.com/Miracevin/p/10960717.ht ...

  7. Codeforces 958C3 - Encryption (hard) 区间dp+抽屉原理

    转自:http://www.cnblogs.com/widsom/p/8863005.html 题目大意: 比起Encryption 中级版,把n的范围扩大到 500000,k,p范围都在100以内, ...

  8. 区间dp总结篇

    前言:这两天没有写什么题目,把前两周做的有些意思的背包题和最长递增.公共子序列写了个总结.反过去写总结,总能让自己有一番收获......就区间dp来说,一开始我完全不明白它是怎么应用的,甚至于看解题报 ...

  9. 2016 年沈阳网络赛---QSC and Master(区间DP)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5900 Problem Description Every school has some legend ...

随机推荐

  1. BugPhobia开发篇章:Alaph阶段Scurm Meeting

    [github]   https://github.com/bugphobia/XuebaOnline 0x01 :目录与摘要 If you weeped for the missing sunset ...

  2. php与nginx之间的通信

    Nginx是俄国人最早开发的Webserver,现在已经风靡全球,相信大家并不陌生.PHP也通过二十多年的发展来到了7系列版本,更加关注性能.这对搭档在最近这些年,叱咤风云,基本上LNMP成了当下的标 ...

  3. c# bitmap和new bitmap(bitmap)及在System.Drawing.Image.get_RawFormat()报错“参数无效”

    问题情境: 给picturebox赋image属性,我用一下代码,出错: Bitmap theBitmap = convertCameraData.display(rawDataArray, heig ...

  4. 第二次作业利用java语言编写计算器进行四则运算

    随着第一次作业的完成,助教 牛老师又布置了第二次作业:用java语言编写一个程序然后进行四则运算用户用键盘输入一个字符来结束程序显示统计结果.一开始看到这个题目我也着实吓了一跳 因为不知道如何下手而且 ...

  5. Teamwork(The third day of the team)

    在确定了第一个spring后我们就开始了各自的工作,不过由于大家都在专注于自己的工作并且由于近段时间的作业及各方面的事情都很多,没有来得及每天都更新一个博客,因此,我们现在把落下的博客都补上,很多事情 ...

  6. 【图论】POJ-3169 差分约束系统

    一.题目 Description Like everyone else, cows like to stand close to their friends when queuing for feed ...

  7. WebGL学习笔记(二)

    目录 绘制多个顶点 使用缓冲区对象 类型化数组 使用drawArrays()函数绘制图形 图形的移动 图形的旋转 图形的缩放 绘制多个顶点 使用缓冲区对象 创建缓冲区对象 var vertexBuff ...

  8. onMeasure实例分析

    本文转自:http://blog.csdn.net/u012604322/article/details/17097105           上面这个两个视图是Android API中没有给出来的但 ...

  9. 我项目中使用userData的实例 UserData.js

    关于userData的介绍,请参见http://hi.baidu.com/kaisep/blog/item/1da9a3312d2da5a15edf0e87.htmlhttp://hi.baidu.c ...

  10. 【大数据】Azkaban学习笔记

    一 概述 1.1 为什么需要工作流调度系统 1)一个完整的数据分析系统通常都是由大量任务单元组成: shell脚本程序,java程序,mapreduce程序.hive脚本等 2)各任务单元之间存在时间 ...