题目链接

hdu4336

题解

最值反演

也叫做\(min-max\)容斥,在计算期望时有奇效

\[max\{S\} = \sum\limits_{T \in S} (-1)^{|T| + 1}min\{T\}
\]

证明:

记\(S = \{a_i\}\),其中对于\(i < j\)有\(a_i < a_j\)

那么我们计算每一个\(a_i\)的贡献,有

\[\begin{aligned}
\sum\limits_{T \in S} (-1)^{|T| + 1}min\{T\} &= \sum\limits_{i = 1}^{n}a_i\sum\limits_{j = 0}^{n - i}(-1)^{j}{n - i \choose j}\\
&= \sum\limits_{i = 1}^{n}a_i[n - i = 0]\\
&= \sum\limits_{i = 1}^{n}a_i[n = i]\\
&= a_n\\
&= max\{S\}
\end{aligned}
\]

证毕

对于此题,我们想要求出所有卡片集合\(S\)中最晚出现的卡片的期望,就转化为计算\(S\)的所有子集中最早出现的期望

对于一个集合\(T\),显然出现一张卡片的期望为

\[\frac{1}{\sum\limits_{i \in T}p_i}
\]

枚举子集计算即可

复杂度\(O(2^n)\)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 25,maxm = 100005,INF = 1000000000;
double p[maxn],ans;
int n;
int main(){
while (~scanf("%d",&n)){
REP(i,n) scanf("%lf",&p[i]);
int maxv = (1 << n) - 1; ans = 0;
for (int s = 1; s <= maxv; s++){
int cnt = 0; double tmp = 0;
for (int e = s,j = 1; e; e >>= 1,j++)
if (e & 1) cnt++,tmp += p[j];
ans += (cnt & 1) ? 1 / tmp : -1 / tmp;
}
printf("%.8lf\n",ans);
}
return 0;
}

hdu4336 Card Collector 【最值反演】的更多相关文章

  1. hdu 4336 Card Collector——最值反演

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=4336 点集中最早出现的元素的期望是 min ,最晚出现的元素的期望是 max :全部出现的期望就是最晚出现 ...

  2. [HDU4336]Card Collector(min-max容斥,最值反演)

    Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  3. hdu4336 Card Collector 状态压缩dp

    Card Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...

  4. hdu4336 Card Collector 概率dp(或容斥原理?)

    题意: 买东西集齐全套卡片赢大奖.每个包装袋里面有一张卡片或者没有. 已知每种卡片出现的概率 p[i],以及所有的卡片种类的数量 n(1<=n<=20). 问集齐卡片需要买东西的数量的期望 ...

  5. hdu4336 Card Collector

    Problem Description In your childhood, do you crazy for collecting the beautiful cards in the snacks ...

  6. hdu4336 Card Collector(概率DP,状态压缩)

    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, fo ...

  7. [HDU4336]:Card Collector(概率DP)

    题目传送门 题目描述 夏川的生日就要到了.作为夏川形式上的男朋友,季堂打算给夏川买一些生日礼物.商店里一共有种礼物.夏川每得到一种礼物,就会获得相应喜悦值$W_i$(每种礼物的喜悦值不能重复获得).每 ...

  8. hdu4336 Card Collector MinMax 容斥

    题目传送门 https://vjudge.net/problem/HDU-4336 http://acm.hdu.edu.cn/showproblem.php?pid=4336 题解 minmax 容 ...

  9. HDU-4336 Card Collector 概率DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意:买食品收集n个卡片,每个卡片的概率分别是pi,且Σp[i]<=1,求收集n个卡片需要 ...

随机推荐

  1. Web服务架构

    # Web服务架构 ### Web服务模型-- 服务提供者.服务请求者.服务注册中心,服务注册中心是一个可选的角色. 现在的Web服务不仅限于WSDL,还有RESTful. - 服务提供者.即Web服 ...

  2. Redis源码阅读(五)集群-故障迁移(上)

    Redis源码阅读(五)集群-故障迁移(上) 故障迁移是集群非常重要的功能:直白的说就是在集群中部分节点失效时,能将失效节点负责的键值对迁移到其他节点上,从而保证整个集群系统在部分节点失效后没有丢失数 ...

  3. 富文本(wangEditor框架)的使用教程

    富文本的使用教程(wangEditor框架) 一,相信很多人用过很多富文本的框架,现在我向大家推荐一个很实用的一个富文本框架,具有丰富的功能项,容易使用. 所以本博客介绍这个富文本编辑器的使用哈!觉得 ...

  4. traceroute命令详解

    基础命令学习目录首页 原文链接:https://www.cnblogs.com/peida/archive/2013/03/07/2947326.html 通过traceroute我们可以知道信息从你 ...

  5. exec命令详解

    基础命令学习目录首页 原文链接: exec: 在bash下输入man exec,找到exec命令解释处,可以看到有”No new process is created.”这样的解释,这就是说exec命 ...

  6. bing词典vs有道词典对比测试报告——功能篇之细节与用户体验

    之所以将细节与用户体验放在一起讨论,是因为两者是那么的密不可分.所谓“细节决定成败”,在细节上让用户感受方便.舒适.不费心而且温馨,多一些人文理念,多一些情怀,做出来的产品自然比其他呆板的产品更受欢迎 ...

  7. 团队作业 & alpha最终测试报告

    本次ALPHA版本测试是依据Daily Scrum11.16(http://www.cnblogs.com/newbe/p/4101339.html)分配的任务有序进行的,从11.16~11.23.为 ...

  8. 2018-2019-20172329 《Java软件结构与数据结构》第八周学习总结

    2018-2019-20172329 <Java软件结构与数据结构>第八周学习总结 现在对于我而言,最珍贵的是时间,感觉自己在时间飞逝的时候真的挽留不住什么,只能怒发冲冠的让自己疯狂的学习 ...

  9. Maven教程--02设置Maven本地仓库|查看Maven中央仓库

    一:设置Maven本地仓库 Maven默认仓库的路径:~\.m2\repository,~表示我的个人文档:例如:C:\Users\Edward\.m2\repository:如下图: Maven的配 ...

  10. 05_Java基础语法_第5天(方法)_讲义

    今日内容介绍 1.方法基础知识 2.方法高级内容 3.方法案例 01方法的概述 * A: 为什么要有方法 * 提高代码的复用性 * B: 什么是方法 * 完成特定功能的代码块. 02方法的定义格式 * ...