【BZOJ4591】【Shoi2015】超能粒子炮
Description
Solution
记\(a=\lfloor\frac n p\rfloor\),\(b=n\%p\)。我们尝试使用Lucas定理展开这些组合数,寻找公共部分。以下除法都作整数下取整除法:
f(n,k)&=\sum_{i=0}^kC_n^i\mod p\\
&=\sum_{i=0}^{ap-1}C_{n/p}^{i/p}*C_{n\%p}^{i\%p}+\sum_{i=ap}^{n}C_{n/p}^{i/p}*C_{n\%p}^{i\%p}\\
&=(\sum_{i=0}^{a-1}C_{n/p}^i*\sum_{j=0}^{p-1}C_{n\%p}^j)+C_{n/p}^{a}*\sum_{i=0}^bC_{n\%p}^i\\
&=f(n/p,a-1)*f(n\%p,p-1)+C_{n/p}^{k/p}f(n\%p,k\%p)
\end{aligned}
\]
所以只需要预处理\(f(0...p-1,0...p-1)\)的值就可以直接计算了。
注意判断k<0的情况,此时\(f\)为0。
Code
#include <cstdio>
using namespace std;
typedef long long ll;
const int MOD=2333,N=2351;
int c[N][N],f[N][N];
inline int plus(int x,int y){return (x+y)%MOD;}
inline int mul(int x,int y){return 1LL*x*y%MOD;}
inline int C(ll n,ll m){
if(n<m) return 0;
if(n<MOD&&m<MOD) return c[n][m];
return mul(C(n/MOD,m/MOD),C(n%MOD,m%MOD));
}
int solve(ll n,ll k){
if(k<0) return 0;
if(n<N&&k<N) return f[n][k];
return plus(mul(solve(n/MOD,k/MOD-1),f[n%MOD][MOD-1]),mul(C(n/MOD,k/MOD),f[n%MOD][k%MOD]));
}
void init(){
c[0][0]=1;
for(int i=1;i<N;i++){
c[i][0]=1;
for(int j=1;j<N;j++) c[i][j]=plus(c[i-1][j],c[i-1][j-1]);
}
for(int i=0;i<N;i++){
f[i][0]=1;
for(int j=1;j<N;j++) f[i][j]=plus(f[i][j-1],c[i][j]);
}
}
int main(){
init();
ll T,n,k;
scanf("%lld",&T);
while(T--){
scanf("%lld%lld",&n,&k);
printf("%lld\n",solve(n,k));
}
return 0;
}
【BZOJ4591】【Shoi2015】超能粒子炮的更多相关文章
- bzoj4591 [Shoi2015]超能粒子炮·改
Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...
- [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)
Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...
- [BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)
大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这 ...
- BZOJ4591 SHOI2015超能粒子炮·改(卢卡斯定理+数位dp)
注意到模数很小,容易想到使用卢卡斯定理,即变成一个2333进制数各位组合数的乘积.对于k的限制容易想到数位dp.可以预处理一发2333以内的组合数及组合数前缀和,然后设f[i][0/1]为前i位是否卡 ...
- BZOJ4591——[Shoi2015]超能粒子炮·改
1.题意:求 2.分析:公式恐惧症的同学不要跑啊QAQ 根据lucas定理-- 这一步大家都能懂吧,这是浅而易见的lucas定理转化过程,将每一项拆分成两项 那么下一步,我们将同类项合并 我们观察可以 ...
- bzoj千题计划279:bzoj4591: [Shoi2015]超能粒子炮·改
http://www.lydsy.com/JudgeOnline/problem.php?id=4591 最后的式子合并同类项 #include<cstdio> #include<i ...
- bzoj4591 [Shoi2015]超能粒子炮·改——组合数学(+求阶乘逆元新姿势)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4591 这题不是很裸啊(所以我就不会了) 得稍微推导一下,看这个博客好了:https://bl ...
- 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)
[BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...
- bzoj4591 / P4345 [SHOI2015]超能粒子炮·改
P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...
- 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 95 Solved: 33[Submit][Statu ...
随机推荐
- XSS分类&危害&防御
XSS(跨站脚本)漏洞是什么? 在网页中插入恶意的js脚本,由于网站没对其过滤,当用户浏览时,就会触发脚本,造成XSS攻击 XSS分类? 1.反射型 用户输入的注入代通过浏览器传入到服务器后,又被目标 ...
- 基于Vue的简单通用分页组件
分页组件是每一个系统里必不可少的一个组件,分页组件分为两部分.第一部分是模版部分,用于显示当前分页组件的状态,例如正在获取数据.没有数据.没有下一页等等:第二部分是分页数据对象,用于封装一个分页组件的 ...
- iOS分类Category探索
什么是Category? Category是Objective-C 2.0之后添加的语言特性,Category的主要作用是为已经存在的类添加方法,一般称为分类,文件名格式是"NSObject ...
- tf导出pb文件,以及如何使用pb文件
先罗列出来代码,有时间再解释 from tensorflow.python.framework import graph_util import tensorflow as tf def export ...
- 获400 万美元 A 轮融资,ShipBob 想帮助小微企业享受Amazon Prime 级配送服务 2016-06-18
Weiss认为,无论零售市场的发展走向如何波动,ShipBob公司都能够获得坚实的成长表现. 在线销售实体商品的小型企业当然希望利用种种方式取悦客户,但面对着Amazon Prime迅如闪电且价格实惠 ...
- 关于如何使用dubbo管理控制台的一些感想
1.起因 因java项目需要准备安装一个dubbo-admin管理后台研究使用,无奈github上并没有看到dubbo-admin的目录着实让人着急.百度引擎上一些文章也不靠谱!真是浪费时间!所以又 ...
- 局域网传输-LED灯搭建局域网:数据传输可达每秒3Gb
一 : LED灯搭建局域网:数据传输可达每秒3Gb 我们之前介绍了利用可见光通讯技术,通过LED灯光实现精准室内定位的例子.实际上,这种灯泡和技术的用途不止于此,比如,它还能进行无线网络传输. 最近, ...
- js备忘录1
新建对象 赋值和取值操作 var book={ topic:"JavaScript", fat: true }; book.topic 通过点访问 book["fat& ...
- 第十次作业psp
psp 进度条 博文累积折线图 代码累积折线图 psp饼状图
- 软件工程第十周psp
1.PSP表格 2.进度条 3.饼状图 4.折线图