Description

  

  传送门

  

   

  

Solution

  

​  记\(a=\lfloor\frac n p\rfloor\),\(b=n\%p\)。我们尝试使用Lucas定理展开这些组合数,寻找公共部分。以下除法都作整数下取整除法:

\[\begin{aligned}
f(n,k)&=\sum_{i=0}^kC_n^i\mod p\\
&=\sum_{i=0}^{ap-1}C_{n/p}^{i/p}*C_{n\%p}^{i\%p}+\sum_{i=ap}^{n}C_{n/p}^{i/p}*C_{n\%p}^{i\%p}\\
&=(\sum_{i=0}^{a-1}C_{n/p}^i*\sum_{j=0}^{p-1}C_{n\%p}^j)+C_{n/p}^{a}*\sum_{i=0}^bC_{n\%p}^i\\
&=f(n/p,a-1)*f(n\%p,p-1)+C_{n/p}^{k/p}f(n\%p,k\%p)
\end{aligned}
\]

     

  

  所以只需要预处理\(f(0...p-1,0...p-1)\)的值就可以直接计算了。

  

  注意判断k<0的情况,此时\(f\)为0。

  

  

  

  

  

Code

  

#include <cstdio>
using namespace std;
typedef long long ll;
const int MOD=2333,N=2351;
int c[N][N],f[N][N];
inline int plus(int x,int y){return (x+y)%MOD;}
inline int mul(int x,int y){return 1LL*x*y%MOD;}
inline int C(ll n,ll m){
if(n<m) return 0;
if(n<MOD&&m<MOD) return c[n][m];
return mul(C(n/MOD,m/MOD),C(n%MOD,m%MOD));
}
int solve(ll n,ll k){
if(k<0) return 0;
if(n<N&&k<N) return f[n][k];
return plus(mul(solve(n/MOD,k/MOD-1),f[n%MOD][MOD-1]),mul(C(n/MOD,k/MOD),f[n%MOD][k%MOD]));
}
void init(){
c[0][0]=1;
for(int i=1;i<N;i++){
c[i][0]=1;
for(int j=1;j<N;j++) c[i][j]=plus(c[i-1][j],c[i-1][j-1]);
}
for(int i=0;i<N;i++){
f[i][0]=1;
for(int j=1;j<N;j++) f[i][j]=plus(f[i][j-1],c[i][j]);
}
}
int main(){
init();
ll T,n,k;
scanf("%lld",&T);
while(T--){
scanf("%lld%lld",&n,&k);
printf("%lld\n",solve(n,k));
}
return 0;
}

【BZOJ4591】【Shoi2015】超能粒子炮的更多相关文章

  1. bzoj4591 [Shoi2015]超能粒子炮·改

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  2. [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  3. [BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)

    大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这 ...

  4. BZOJ4591 SHOI2015超能粒子炮·改(卢卡斯定理+数位dp)

    注意到模数很小,容易想到使用卢卡斯定理,即变成一个2333进制数各位组合数的乘积.对于k的限制容易想到数位dp.可以预处理一发2333以内的组合数及组合数前缀和,然后设f[i][0/1]为前i位是否卡 ...

  5. BZOJ4591——[Shoi2015]超能粒子炮·改

    1.题意:求 2.分析:公式恐惧症的同学不要跑啊QAQ 根据lucas定理-- 这一步大家都能懂吧,这是浅而易见的lucas定理转化过程,将每一项拆分成两项 那么下一步,我们将同类项合并 我们观察可以 ...

  6. bzoj千题计划279:bzoj4591: [Shoi2015]超能粒子炮·改

    http://www.lydsy.com/JudgeOnline/problem.php?id=4591 最后的式子合并同类项 #include<cstdio> #include<i ...

  7. bzoj4591 [Shoi2015]超能粒子炮·改——组合数学(+求阶乘逆元新姿势)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4591 这题不是很裸啊(所以我就不会了) 得稍微推导一下,看这个博客好了:https://bl ...

  8. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

  9. bzoj4591 / P4345 [SHOI2015]超能粒子炮·改

    P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...

  10. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

随机推荐

  1. 【微服务架构】SpringCloud组件和概念介绍(一)

    一:什么是微服务(Microservice) 微服务英文名称Microservice,Microservice架构模式就是将整个Web应用组织为一系列小的Web服务.这些小的Web服务可以独立地编译及 ...

  2. Spark聚合操作:combineByKey()

    Spark中对键值对RDD(pairRDD)基于键的聚合函数中,都是通过combineByKey()实现的. 它可以让用户返回与输入数据类型不同的返回值(可以自己配置返回的参数,返回的类型) 首先理解 ...

  3. 关于java调用Dll文件的异常 Native library (win32-x86-64/CtrlNPCDLL.dll) not found in resource pat

    解决办法  将dll文件放入项目bin目录下

  4. 学习Mybatis的两个必须的jar包分享

    百度云盘:http://pan.baidu.com/s/1nuNxRcd 提取码:t765(好像不需要提取码,不太会用云盘...) 自己学习mybatis的时候去找这两个jar包也是不容易,特别分享一 ...

  5. 树莓派 Raspberry-Pi 折腾系列:系统安装及一些必要的配置

    入手树莓派将近一个月了,很折腾,许多资源不好找,也很乱.简单整理一下自己用到的东西,方便以后自己或别人继续折腾. 0. 操作系统下载 树莓派官方 Raspbian 系统下载:http://www.ra ...

  6. c# combobox向上展开

    1.问题情境:实际中的下拉框默认向下扩展,如果屏幕下方空间不足,会向上扩展. 向下扩展情况下,有时候会超出form窗体. 2.解决办法: 寻找相关属性无果. 退而求其次,重画item的框.发现Draw ...

  7. Task 4.2 求一个矩阵的最大子矩阵的和

    任务:输入一个二维整形数组,数组里有正数也有负数.二维数组中连续的一个子矩阵组成一个子数组,每个子数组都有一个和.求所有子数组的和的最大值.要求时间复杂度为O(n). (1)设计思想:把二维矩阵分解成 ...

  8. window 窗口编辑

    package com.chuangkohua; import java.awt.FileDialog; import java.awt.FlowLayout; import java.awt.Fra ...

  9. Codeforces Round #196 (Div. 2) D. Book of Evil 树形dp

    题目链接: http://codeforces.com/problemset/problem/337/D D. Book of Evil time limit per test2 secondsmem ...

  10. python learning Exception & Debug.py

    ''' 在程序运行的过程中,如果发生了错误,可以事先约定返回一个错误代码,这样,就可以知道是否有错,以及出错的原因.在操作系统提供的调用中,返回错误码非常常见.比如打开文件的函数open(),成功时返 ...