Description

  

  传送门

  

   

  

Solution

  

​  记\(a=\lfloor\frac n p\rfloor\),\(b=n\%p\)。我们尝试使用Lucas定理展开这些组合数,寻找公共部分。以下除法都作整数下取整除法:

\[\begin{aligned}
f(n,k)&=\sum_{i=0}^kC_n^i\mod p\\
&=\sum_{i=0}^{ap-1}C_{n/p}^{i/p}*C_{n\%p}^{i\%p}+\sum_{i=ap}^{n}C_{n/p}^{i/p}*C_{n\%p}^{i\%p}\\
&=(\sum_{i=0}^{a-1}C_{n/p}^i*\sum_{j=0}^{p-1}C_{n\%p}^j)+C_{n/p}^{a}*\sum_{i=0}^bC_{n\%p}^i\\
&=f(n/p,a-1)*f(n\%p,p-1)+C_{n/p}^{k/p}f(n\%p,k\%p)
\end{aligned}
\]

     

  

  所以只需要预处理\(f(0...p-1,0...p-1)\)的值就可以直接计算了。

  

  注意判断k<0的情况,此时\(f\)为0。

  

  

  

  

  

Code

  

#include <cstdio>
using namespace std;
typedef long long ll;
const int MOD=2333,N=2351;
int c[N][N],f[N][N];
inline int plus(int x,int y){return (x+y)%MOD;}
inline int mul(int x,int y){return 1LL*x*y%MOD;}
inline int C(ll n,ll m){
if(n<m) return 0;
if(n<MOD&&m<MOD) return c[n][m];
return mul(C(n/MOD,m/MOD),C(n%MOD,m%MOD));
}
int solve(ll n,ll k){
if(k<0) return 0;
if(n<N&&k<N) return f[n][k];
return plus(mul(solve(n/MOD,k/MOD-1),f[n%MOD][MOD-1]),mul(C(n/MOD,k/MOD),f[n%MOD][k%MOD]));
}
void init(){
c[0][0]=1;
for(int i=1;i<N;i++){
c[i][0]=1;
for(int j=1;j<N;j++) c[i][j]=plus(c[i-1][j],c[i-1][j-1]);
}
for(int i=0;i<N;i++){
f[i][0]=1;
for(int j=1;j<N;j++) f[i][j]=plus(f[i][j-1],c[i][j]);
}
}
int main(){
init();
ll T,n,k;
scanf("%lld",&T);
while(T--){
scanf("%lld%lld",&n,&k);
printf("%lld\n",solve(n,k));
}
return 0;
}

【BZOJ4591】【Shoi2015】超能粒子炮的更多相关文章

  1. bzoj4591 [Shoi2015]超能粒子炮·改

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  2. [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  3. [BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)

    大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这 ...

  4. BZOJ4591 SHOI2015超能粒子炮·改(卢卡斯定理+数位dp)

    注意到模数很小,容易想到使用卢卡斯定理,即变成一个2333进制数各位组合数的乘积.对于k的限制容易想到数位dp.可以预处理一发2333以内的组合数及组合数前缀和,然后设f[i][0/1]为前i位是否卡 ...

  5. BZOJ4591——[Shoi2015]超能粒子炮·改

    1.题意:求 2.分析:公式恐惧症的同学不要跑啊QAQ 根据lucas定理-- 这一步大家都能懂吧,这是浅而易见的lucas定理转化过程,将每一项拆分成两项 那么下一步,我们将同类项合并 我们观察可以 ...

  6. bzoj千题计划279:bzoj4591: [Shoi2015]超能粒子炮·改

    http://www.lydsy.com/JudgeOnline/problem.php?id=4591 最后的式子合并同类项 #include<cstdio> #include<i ...

  7. bzoj4591 [Shoi2015]超能粒子炮·改——组合数学(+求阶乘逆元新姿势)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4591 这题不是很裸啊(所以我就不会了) 得稍微推导一下,看这个博客好了:https://bl ...

  8. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

  9. bzoj4591 / P4345 [SHOI2015]超能粒子炮·改

    P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...

  10. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

随机推荐

  1. shell中与运算 cut切分行 if while综合在一起的一个例子

    前言: 公司要统计 treasury库hive表磁盘空间,写了个脚本,如下: 查询hive仓库表占用hdfs文件大小: hadoop fs -du -h  /user/hive/warehouse/t ...

  2. 三种UIScrollView嵌套实现方案

    背景 随着产品功能不断的迭代,总会有需求希望在保证不影响其他区域功能的前提下,在某一区域实现根据选择器切换不同的内容显示. 苹果并不推荐嵌套滚动视图,如果直接添加的话,就会出现下图这种情况,手势的冲突 ...

  3. CF100015C

    主要找到环上任意一条边,有比较dis(u,v),dis(u,a)+w+dis(b,v),dis(u,b)+w+dis(a,u) 然后,然后没了 lca求dis(u,v):dis(u,v)=dis[u] ...

  4. Kettle日常使用汇总整理

    Kettle日常使用汇总整理 Kettle源码下载地址: https://github.com/pentaho/pentaho-kettle Kettle软件下载地址: https://sourcef ...

  5. 初学node.js-nodejs安装运行(1)

    1.Node.js中文官网http://nodejs.cn/download/下载node.js 学习node.js需要有javascript基础,没有基础的可以在http://www.w3schoo ...

  6. 03_set slice的时间复杂度

    set slice O(n+k) 使用切片赋值来解释set slice的时间复杂度 (1) 对li[0:3]赋值首先会删除1,2,3,空出来的位置被后面的元素依次向前移动填充,由del slice 得 ...

  7. MySQL基础(一)

    首先需要安装MySOL,这里我是在windows环境下安装的,具体教程可以参考https://www.cnblogs.com/xsmile/p/7753984.html,不过要注意安装过程可能会不太顺 ...

  8. 基于LiFi可见光通信技术的研究及应用转化调查

    这个仅是本人的部分调研结果,有同行做可见光研究的可以联系交流,QQ:391349683 

  9. GridView的控件说明[字典]-----方便查询

    GridView 控件以表格的形式显示数据,并提供对数据进行排序,选择,编辑,删除等功能. GridView能够完成的功能具体可以总结如下: 1,通过数据源控件将数据绑定到GridView控件 2,对 ...

  10. 四则运算<C++>

    代码: #include<iostream> #define N 30 using namespace std; void main() { cout<<"***** ...