【转】Caffe初试(九)solver及其设置
solver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为
#caffe train --solver=*_solver.prototxt
在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法。
到目前的版本,caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择。
- Stochastic Gradient Descent (
type: "SGD"), - AdaDelta (
type: "AdaDelta"), - Adaptive Gradient (
type: "AdaGrad"), - Adam (
type: "Adam"), - Nesterov’s Accelerated Gradient (
type: "Nesterov") and - RMSprop (
type: "RMSProp")
具体的每种方法的介绍,请看本系列的下一篇文章,本文着重介绍solver配置文件的编写。
Solver的流程:
1、设计好需要优化的对象,以及用于学习的训练网络和用于评估的测试网络。(通过调用另外一个配置文件prototxt来进行)
2、通过forward和backward迭代的进行优化来更新参数。
3、定期的评价测试网络。(可设定多少次训练后,进行一次测试)
4、在优化过程中显示模型和solver的状态。
在每一次的迭代过程中,solver做了这几步工作:
1、调用forward算法来计算最终的输出值,以及对应的loss
2、调用backward算法来计算每层的梯度
3、根据选用的solver方法,利用梯度进行参数更新
4、记录并保存每次迭代的学习率、快照,以及对应的状态。
接下来,我们先来看一下实例:
net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 0.01
momentum: 0.9
type: SGD
weight_decay: 0.0005
lr_policy: "inv"
gamma: 0.0001
power: 0.75
display: 100
max_iter: 20000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
solver_mode: CPU
接下来,我们对每一行进行详细解释:
net: "examples/mnist/lenet_train_test.prototxt"
设置深度网络模型。每一个模型就是一个net,需要在一个专门的配置文件中对net进行配置,每个net由许多的layer所组成。每一个layer的具体配置方式可参考前面的博客。
注意的是:文件的路径要从caffe的根目录开始,其它的所有配置都是这样。
也可用train_net和test_net来对训练模型和测试模型分别设定。例如:
train_net: "examples/hdf5_classification/logreg_auto_train.prototxt"
test_net: "examples/hdf5_classification/logreg_auto_test.prototxt"
接下来第二行:
test_iter: 100
这个要与test layer中的batch_size结合起来理解。mnist数据中测试样本总数为10000,一次性执行全部数据效率很低,因此我们将测试数据分成几批次来执行,每个批次的数量就是batch_size。假设我们设置batch_size为1000,则需要迭代100次才能将10000个数据全部执行完。因此test_iter设置为100。执行完一次数据,称之为一个epoch
test_interval: 500
测试间隔。也就是每训练500次,才进行一次测试。
base_lr: 0.01
lr_policy: "inv"
gamma: 0.0001
power: 0.75
这四行可以放在一起理解,用于学习率的设置。只要是梯度下降法来求解优化,都会有一个学习率,也叫步长。base_lr用于设置基础学习率,在迭代的过程中,可以对基础学习率进行调整。怎么样进行调整,就是调整的策略,由lr_policy来设置。
lr_policy可以设置为下面这些值,相应的学习率的计算为:
- - fixed: 保持base_lr不变.
- - step: 如果设置为step,则还需要设置一个stepsize, 返回 base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数
- - exp: 返回base_lr * gamma ^ iter, iter为当前迭代次数
- - inv: 如果设置为inv,还需要设置一个power, 返回base_lr * (1 + gamma * iter) ^ (- power)
- - multistep: 如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multistep则是根据stepvalue值变化
- - poly: 学习率进行多项式误差, 返回 base_lr (1 - iter/max_iter) ^ (power)
- - sigmoid: 学习率进行sigmod衰减,返回 base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))
multistep示例:
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "multistep"
gamma: 0.9
stepvalue: 5000
stepvalue: 7000
stepvalue: 8000
stepvalue: 9000
stepvalue: 9500
接下来的参数:
momentum :0.9
上一次梯度更新的权重,具体可参看下一篇博客。
type: SGD
优化算法选择。这一行可以省略,因为默认值就是SGD。总共有六种方法可选择,在本文的开头已介绍。
weight_decay: 0.0005
权重衰减项,防止过拟合的一个参数。
display: 100
每训练100次,在屏幕上显示一次,如果设置为0,则不显示。
max_iter: 20000
最大迭代次数。这个数设置太小,会导致没有收敛,精确度很低。设置太大,会导致震荡,浪费时间。
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
快照。将训练出来的model和solver状态进行保存,snapshot用于设置训练多少次后进行保存,默认为0,不保存。snapshot_prefix设置保存路径。还可以设置snapshot_diff,是否保存梯度值,默认为false,不保存。也可以设置snapshot_format,保存的类型。有两种选择:HDF5和BINARYPROTO,默认为BINARYPROTO。
solver_mode: CPU
设置运行模式。默认为GPU,如果你没有GPU,则需要改成CPU,否则会出错。
注意:以上的所有参数都是可选参数,都有默认值。根据solver方法(type)的不同,还有一些其它的参数,在此就不一一列举。
【转】Caffe初试(九)solver及其设置的更多相关文章
- Caffe的Solver参数设置
Caffe的solver参数设置 http://caffe.berkeleyvision.org/tutorial/solver.html solver是通过协调前向-反向传播的参数更新来控制参数优化 ...
- 【转】Caffe初试(十)命令行解析
caffe的运行提供三种接口:C++接口(命令行).Python接口和matlab接口.本文先对命令行进行解析,后续会依次介绍其它两种接口. caffe的C++主程序(caffe.cpp)放在根目录下 ...
- Caffe初试(二)windows下的cafee训练和测试mnist数据集
一.mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试 ...
- Caffe源码-Solver类
Solver类简介 Net类中实现了网络的前向/反向计算和参数更新,而Solver类中则是对此进行进一步封装,包含可用于逐次训练网络的Step()函数,和用于求解网络的优化解的Solve()函数,同时 ...
- caffe初试(一)happynear的caffe-windows版本的配置及遇到的问题
之前已经配置过一次caffe环境了: Caffe初试(一)win7_64bit+VS2013+Opencv2.4.10+CUDA6.5配置Caffe环境 但其中也提到,编译时,用到了cuda6.5,但 ...
- 【转】Caffe初试(五)视觉层及参数
本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. ...
- Caffe源代码中Solver文件分析
Caffe源代码(caffe version commit: 09868ac , date: 2015.08.15)中有一些重要的头文件,这里介绍下include/caffe/solver.hpp文件 ...
- Caffe初试
1.基本概念 Caffe是一个比较流行的神经网络框架,它支持C++.Python等语言,容易上手,但是代码貌似不怎么好读,等有空我...;) 2.Windows10下的部署 我把我Windows下的编 ...
- 【撸码caffe四】 solver.cpp&&sgd_solver.cpp
caffe中solver的作用就是交替低啊用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法. solver.cpp中的Solver ...
随机推荐
- vs中使用beyondcompare比较
开启 Visual Studio 的 [工具] /[选项] / [源代码管理] /[Visual Studio Team Foundation],并开启「配置用户工具」 如下图单击「添加」按钮 接着 ...
- iOS 10.0适配之旅
1.升级Xcode体验 升级到Xcode之后,调试程序好多东西都不是太适应 控制台莫名给你打印一堆不是太好理解的东西 之前使用 Alcatraz 下载的插件都不能用(如何使用Alcatraz) 打开麦 ...
- Xamarin.ios 基本控件
.按钮 UIButton UIButton btn = new UIButton(); btn.Frame = ,,,); //按钮位置一件宽高 btn.SetTitle("Button&q ...
- windows bat批处理语法简析
第一节先介绍windows批处理.这个起源于跟旁边同事学习在windows用命令行办公,渐渐地有些批处理功能就需要了,于是专门抽出了几天学习了一下.我认为文档最重要的功能是为了备忘,择取了很多文档的例 ...
- 关于php编程的一些小技巧
1. NULL,0和空的区分判断 (1)0与空的区分 <?php $a = 0;if($a==''){ echo '此判断条件不能区分';}else{ echo '此判断条件可以区分';} ? ...
- 图解JVM执行引擎之方法调用
一.方法调用 方法调用不同于方法执行,方法调用阶段的唯一任务就是确定被调用方法的版本(即调用哪一个方法),暂时还不涉及方法内部的具体运行过程.Class文件的编译过程中不包括传统编译器中的连接步骤,一 ...
- NC凭证接口(Java发送流和处理返回结果)
问题描述: 金融行业在系统模块分为财务和业务两个系统,我公司是负责业务模块系统,NC公司负责财务系统.但是财务有时候需要生成凭证,这时候就涉及业务模块了,我方就需要写NC凭证接口.这时候就需要三方交互 ...
- js中获取窗口高度的方法
取窗口滚动条滚动高度 function getScrollTop() { var scrollTop=0; if(document.documentElement&&document. ...
- Xamarin.Forms 简介
An Introduction to Xamarin.Forms 来源:http://developer.xamarin.com/guides/cross-platform/xamarin-forms ...
- ORACLE 常见错误
ora-00904 : 标识符无效:查询语句中的列或表在oracle 中不存在: