Description

设d(x)为x的约数个数,给定1<=T<=50000 组1<=N, M<=50000 ,求


有一个公式$$d(ij)=\sum_{x|i}\sum_{y|j}[gcd(i,j)=1]$$

先简单证明一下

如果\(p_1^{k_1}|i\wedge p_1^{k_2}|j\) ,那么对于\(ij\)的一个因子\(p_1^{k_3}\) ,如果\(k_3\leq k_1\)我们就假设\(p_1^{k_3}\)全部来自于\(i\),不然就是\(k_1\)来自于\(i\),剩余部分\(k_3-k_1\)来自\(k_2\)这样的话,如果\(p_1^{k_3}|x\)就表示含有\(p_1^{k_3}\)的那个因数,如果\(p_1^{k_3}|y\)就表示含有\(p_1^{k_1+k_3}\) 的那个因数。就可以表示出全部因数!这时\(gcd(i,j)\neq 1\)的表示是没有意义的!

然后就可以开始欢乐的画柿子了

\[ans=\sum_{i=1}^{n}\sum_{j=1}^m\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]
\]

\[=\sum_x^n\sum_y^m\lfloor\frac n x\rfloor\lfloor\frac m y\rfloor\sum_{k|x\wedge k|y}\mu(k)
\]

\[=\sum_{k=1}^{min(n,m)}\mu (k)\sum_{x=1}^{\lfloor\frac n x\rfloor}\sum_{y=1}^{\lfloor\frac m y\rfloor}\lfloor\frac n {xk}\rfloor\lfloor\frac m {yk}\rfloor
\]

\[=\sum_{k=1}^{min(n,m)}\mu (k)\sum_{x=1}^{\lfloor\frac n x\rfloor}\sum_{y=1}^{\lfloor\frac m y\rfloor}\lfloor\frac {\lfloor\frac n k\rfloor} x\rfloor\lfloor\frac {\lfloor\frac m k\rfloor} y\rfloor
\]

恩...

预处理一个函数\(g(x)=\sum_{i=1}^x \lfloor \frac x i\rfloor\)

后面那一块$$\sum_{x=1}^{\lfloor\frac n x\rfloor}\sum_{y=1}^{\lfloor\frac m y\rfloor}\lfloor\frac {\lfloor\frac n k\rfloor} x\rfloor\lfloor\frac {\lfloor\frac m k\rfloor} y\rfloor$$

就可以在这个基础上整除分块了啊,整个的时间复杂度\(O(T\sqrt n)\)


#include<iostream>
#include<cstdio>
#include<cstring>
#define M 50001
#define LL long long
using namespace std; int m,n,k,cnt,p[M],b[M],x,y;
LL mu[M],g[M]; void Mu()
{
mu[1]=1;
for(int i=2;i<M;i++)
{
if(!b[i]) {p[++cnt]=i, mu[i]=-1;}
for(int j=1;j<=cnt && p[j]*i<M;j++)
{
b[i*p[j]]=1; if(i%p[j]==0) break;
mu[i*p[j]]=-mu[i];
}
}
for(int i=2;i<M;i++) mu[i]+=mu[i-1];
} int main()
{
Mu();
for(int i=1;i<M;i++)
for(int l=1,r;l<=i;l=r+1)
{
r=i/(i/l);
g[i]+=(r-l+1ll)*((LL)i/l);
}
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&x,&y); LL ans=0; if(x>y) swap(x,y);
for(int l=1,r;l<=x;l=r+1)
{
r=min(x/(x/l),y/(y/l));
ans+=(g[x/l]*g[y/l])*(mu[r]-mu[l-1]);
}
printf("%lld\n",ans);
}
}

3994: [SDOI2015]约数个数和的更多相关文章

  1. 【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)

    3994: [SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接 ...

  2. BZOJ 3994: [SDOI2015]约数个数和

    3994: [SDOI2015]约数个数和 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 898  Solved: 619[Submit][Statu ...

  3. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  4. 【BZOJ】3994: [SDOI2015]约数个数和

    题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...

  5. BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]

    2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...

  6. 【刷题】BZOJ 3994 [SDOI2015]约数个数和

    Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T ...

  7. ●BZOJ 3994 [SDOI2015]约数个数和

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3994 题解: 莫比乌斯反演 (先定义这样一个符号[x],如果x为true,则[x]=1,否则 ...

  8. bzoj 3994 [SDOI2015]约数个数和——反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3994 \( d(i*j)=\sum\limits_{x|i}\sum\limits_{y|j ...

  9. BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/deta ...

随机推荐

  1. javascript中的undefined与null的区别

    一.相似性 在JavaScript中,将一个变量赋值为undefined或null,老实说,几乎没区别. var a = undefined; var a = null; 上面代码中,a变量分别被赋值 ...

  2. flask-login的使用3

    # coding=utf-8 import flask app = flask.Flask(__name__) app.secret_key = 'super secret string' impor ...

  3. jQuery源码学习笔记二

    //添加实例属性和方法 jQuery.fn = jQuery.prototype = { // 版本,使用方式:$().jquery弹出当前引入的jquery的版本 jquery: core_vers ...

  4. Atitit.播放系统的选片服务器,包厢记时系统 的说明,教程,维护,故障排查手册p825

    Atitit.播放系统的选片服务器,包厢记时系统 的说明,教程,维护,故障排查手册p825 1. 播放系统服务器方面的维护2 1.1. 默认情况下,已经在系统的启动目录下增加了俩个启动项目2 1.2. ...

  5. local_listener参数的作用!

    转自:http://warehouse.itpub.net/post/777/472788 pmon只会动态注册port等于1521的监听,否则pmon不能动态注册listener,要想让pmon动态 ...

  6. ORACLE EXPDP命令使用详细

    相关参数以及导出示例: 1. DIRECTORY 指定转储文件和日志文件所在的目录DIRECTORY=directory_objectDirectory_object用于指定目录对象名称.需要注意,目 ...

  7. canvas动画部分

    requestAnimationFrame(callback) 一个用于制作逐帧动画的函数 //这个函数会在控制台无限输出"----" (function animate() { ...

  8. webapp开发绝对定位引发的问题

    最近做了一个webapp 需求是要滑动页面翻页,我使用了大量绝对定位 当遇到输入框时,在部分手机上发现了问题.虚拟键盘收回时,整个body全部下移了,经过多次测试, 发现是fixed布局的音乐按钮造成 ...

  9. MySQL: OPTIMIZE TABLE: Table does not support optimize, doing recreate + analyze instead

    show create table history;-------------------------- CREATE TABLE `foo` (  `itemid` bigint(20) unsig ...

  10. [翻译] IDMPhotoBrowser

    IDMPhotoBrowser IDMPhotoBrowser is a new implementation based on MWPhotoBrowser. IDMPhotoBrowser实现了图 ...