3994: [SDOI2015]约数个数和
Description
设d(x)为x的约数个数,给定1<=T<=50000 组1<=N, M<=50000 ,求 
有一个公式$$d(ij)=\sum_{x|i}\sum_{y|j}[gcd(i,j)=1]$$
先简单证明一下
如果\(p_1^{k_1}|i\wedge p_1^{k_2}|j\) ,那么对于\(ij\)的一个因子\(p_1^{k_3}\) ,如果\(k_3\leq k_1\)我们就假设\(p_1^{k_3}\)全部来自于\(i\),不然就是\(k_1\)来自于\(i\),剩余部分\(k_3-k_1\)来自\(k_2\)这样的话,如果\(p_1^{k_3}|x\)就表示含有\(p_1^{k_3}\)的那个因数,如果\(p_1^{k_3}|y\)就表示含有\(p_1^{k_1+k_3}\) 的那个因数。就可以表示出全部因数!这时\(gcd(i,j)\neq 1\)的表示是没有意义的!
然后就可以开始欢乐的画柿子了
\]
\]
\]
\]
恩...

预处理一个函数\(g(x)=\sum_{i=1}^x \lfloor \frac x i\rfloor\)
后面那一块$$\sum_{x=1}^{\lfloor\frac n x\rfloor}\sum_{y=1}^{\lfloor\frac m y\rfloor}\lfloor\frac {\lfloor\frac n k\rfloor} x\rfloor\lfloor\frac {\lfloor\frac m k\rfloor} y\rfloor$$
就可以在这个基础上整除分块了啊,整个的时间复杂度\(O(T\sqrt n)\)
#include<iostream>
#include<cstdio>
#include<cstring>
#define M 50001
#define LL long long
using namespace std;
int m,n,k,cnt,p[M],b[M],x,y;
LL mu[M],g[M];
void Mu()
{
mu[1]=1;
for(int i=2;i<M;i++)
{
if(!b[i]) {p[++cnt]=i, mu[i]=-1;}
for(int j=1;j<=cnt && p[j]*i<M;j++)
{
b[i*p[j]]=1; if(i%p[j]==0) break;
mu[i*p[j]]=-mu[i];
}
}
for(int i=2;i<M;i++) mu[i]+=mu[i-1];
}
int main()
{
Mu();
for(int i=1;i<M;i++)
for(int l=1,r;l<=i;l=r+1)
{
r=i/(i/l);
g[i]+=(r-l+1ll)*((LL)i/l);
}
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&x,&y); LL ans=0; if(x>y) swap(x,y);
for(int l=1,r;l<=x;l=r+1)
{
r=min(x/(x/l),y/(y/l));
ans+=(g[x/l]*g[y/l])*(mu[r]-mu[l-1]);
}
printf("%lld\n",ans);
}
}
3994: [SDOI2015]约数个数和的更多相关文章
- 【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)
3994: [SDOI2015]约数个数和 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接 ...
- BZOJ 3994: [SDOI2015]约数个数和
3994: [SDOI2015]约数个数和 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 898 Solved: 619[Submit][Statu ...
- [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)
[BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...
- 【BZOJ】3994: [SDOI2015]约数个数和
题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...
- BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]
2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...
- 【刷题】BZOJ 3994 [SDOI2015]约数个数和
Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T ...
- ●BZOJ 3994 [SDOI2015]约数个数和
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3994 题解: 莫比乌斯反演 (先定义这样一个符号[x],如果x为true,则[x]=1,否则 ...
- bzoj 3994 [SDOI2015]约数个数和——反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3994 \( d(i*j)=\sum\limits_{x|i}\sum\limits_{y|j ...
- BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/deta ...
随机推荐
- [C#]INI文件控制类
INI文件常用于保存各类设置或本地化文本,大概格式如下: [Section] key=value 然而.NET框架似乎并没有提供一个实用的工具来操作它,或许是因为MS想让我们都使用Settings类控 ...
- ModelState.IsValid always returning true while mocking a request
ASB.net MVC 视图验证里有一个IValidatableObject接口.这里面有一个验证方法.通常我们表单提交的时候dto就是用一个实现IValidatableObject这个接口的实体. ...
- 为什么要用 C# 来作为您的首选编程语言
因为您可以用,并且也是您的最佳选择!之所以可用,是因为 C# 能够很好地在 Mac.Linux.Android 和 iOS 上运行(对了,还有 Windows):它可以在您最喜爱的编辑器上运行:它在一 ...
- java设计模式-----18、职责链模式
概念: Chain of Responsibility(CoR)模式也叫职责链模式.责任链模式或者职责连锁模式,是行为模式之一,该模式构造一系列分别担当不同的职责的类的对象来共同完成一个任务,这些类的 ...
- 最全Vue开发环境搭建
前言 一直想去学Vue,不过一直找不到一个契机.然公司手机端用到了跨平台开发apicloud,里边涉及到Vue组件化开发,例如header和footer的封装,以及apicloud自定义的frame等 ...
- 翻译 – CSS3 Backgrounds相关介绍——张鑫旭
—————以下为翻译内容—————- CSS2.1中有5个background属性可以用来控制元素的背景.这5个属性是: background-color background-image backg ...
- python学习之老男孩python全栈第九期_数据库day001 -- 作业
创建如图所示数据库: 创建过程: 查看数据库,创建数据库 db1,再查看一下数据库 进入数据库,查看一下表 接着再创建一个class表 发现增加了重复数据,因此要把第二个修改一下 修改完数据之 ...
- LOJ#6032. 「雅礼集训 2017 Day2」水箱
传送门 首先可以有一个平方复杂度的 \(DP\) 设 \(f_{i,j}\) 表示前面 \(i\) 个小格,高度为 \(j\) 的最大答案 令 \(h_i\) 表示隔板 \(i\) 的高度 当 \(j ...
- Java 实验案例(类和对象篇)
实验任务 任务一:手机类的封装 任务二:基于控制台的购书系统 任务三:简单的投票程序 实验内容 任务一:手机类的封装 任务目的 理解和掌握面向对象的设计过程 掌握类的结构和定义过程 掌握构造方法及其重 ...
- 产品经理都知道MVP,但是它可能不再是产品研发最好的模型了
产品经理都知道MVP,但是它可能不再是产品研发最好的模型了 孟小白Aspire • 2017-09-01 • 汽车交通 要简单.讨喜.完整,不要最小可行性产品.这对创业公司的第一个产品来说很重要. M ...