https://pintia.cn/problem-sets/994805342720868352/problems/994805343043829760

This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 1,000), the number of vertices in the graph, and M (≤ 10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (≤ 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.

Output Specification:

Print in a line all the indices of queries which correspond to "NOT a topological order". The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.

Sample Input:

6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
5
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6

Sample Output:

3 4

代码:

#include <bits/stdc++.h>
using namespace std; int N, M, K;
int topo[1010][1010];
int num[1010];
map<int, int> mp; int main() {
scanf("%d%d", &N, &M);
memset(topo, 0, sizeof(topo));
while(M --) {
int a, b;
scanf("%d%d", &a, &b);
topo[a][b] = 1;
} scanf("%d", &K);
vector<int> ans;
for(int k = 0; k < K; k ++) {
bool flag = true;
for(int i = 0; i < N; i ++)
scanf("%d", &num[i]); for(int i = N - 1; i >= 1; i --) {
for(int j = i - 1; j >= 0; j --) {
if(topo[num[i]][num[j]]) {
flag = false;
break;
}
}
}
if(!flag) ans.push_back(k);
} for(int i = 0; i < ans.size(); i ++)
printf("%d%s", ans[i], i != ans.size() - 1 ? " " : "\n");
return 0;
}

  建立有向图 输入的每一组数据从后向前暴力如果走得通的话就是 false

FHFHFH

PAT 甲级 1146 Topological Order的更多相关文章

  1. PAT 甲级 1146 Topological Order (25 分)(拓扑较简单,保存入度数和出度的节点即可)

    1146 Topological Order (25 分)   This is a problem given in the Graduate Entrance Exam in 2018: Which ...

  2. PAT甲级——1146 Topological Order (25分)

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  3. PAT 1146 Topological Order[难]

    1146 Topological Order (25 分) This is a problem given in the Graduate Entrance Exam in 2018: Which o ...

  4. [PAT] 1146 Topological Order(25 分)

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  5. PAT 1146 Topological Order

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  6. 1146. Topological Order (25)

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  7. 1146 Topological Order

    题意:判断序列是否为拓扑序列. 思路:理解什么是拓扑排序就好了,简单题.需要注意的地方就是,因为这里要判断多个,每次判断都会改变入度indegree[],因此记得要把indegree[]留个备份.ps ...

  8. PAT甲级目录

    树(23) 备注 1004 Counting Leaves   1020 Tree Traversals   1043 Is It a Binary Search Tree 判断BST,BST的性质 ...

  9. PAT A1146 Topological Order (25 分)——拓扑排序,入度

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

随机推荐

  1. python之打包、发布模块

    一.python中针对于写好的模块,并且比人也可以使用改模块,这样就可以以同意的打出来,让别人安装或者赋值过后可以更好的使用以及集成. 二.最近在学习python所以这里主要是记录一下python的打 ...

  2. Tomcat部署Web应用

    在Tomcat中部署Web有三种方法: 1,可以将Web应用文件直接复制到webapps目录下,也可以将Web应用打成war包放到webapps目录下,tomcat会自动解开war包,并在webapp ...

  3. linux 查询管道过滤,带上标题字段

    linux查询过滤, 带上标题字段例: 一个简单的查询 ps -e | grep httpd 上面经过grep 过滤后, 标题没了, 但是为了看上去更方便,有标题字段看起来更方便一些, 那么可以按下面 ...

  4. Appium知识积累

    1.使用uiautomatorviewer 可以直接在命令行输入uiautomatorviewer,打开获取屏幕截图工具,连接手机,打开所要获取包名的应用,然后获取其截图,根据截图查看package即 ...

  5. 'javac' 不是内部或外部命令,也不是可运行的程序 或批处理文件.

    如果你只需要使用javac命令不需要如此复杂的!! 你先把你自己新建的JAVA_HOME.CLASSPATH这两个变量和PATH变量中的JAVA_HOME%\bin;%JAVA_HOME%\jre\b ...

  6. Python机器学习库SKLearn:数据集转换之管道和特征

    转载自:https://blog.csdn.net/cheng9981/article/details/61918129 4.1 管道和特征:组合估计量 4.1.1 管道:链接估计 管道可以用于将多个 ...

  7. openstack horizon开发第一天

    horizon插件构造 创建一个dashboardmkdir opesntack_dashboard/dashboards/mydashboardpython manage.py startdash ...

  8. 温习DL之一:梯度的概念

    1.梯度的概念 梯度是一个矢量,表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向变化最快. 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写 ...

  9. logout命令详解

    基础命令学习目录首页 logout指令让用户退出系统,其功能和login指令相互对应.语法 logout

  10. nohup命令详解

    基础命令学习目录首页 原文链接:https://blog.csdn.net/hfismyangel/article/details/80258126 1.nohup 用途:不挂断地运行命令. 语法:n ...