题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6214

题意:求边数最小的割。

解法:

建边的时候每条边权 w = w * (E + 1) + 1;
这样得到最大流 maxflow / (E + 1) ,最少割边数 maxflow % (E + 1)

道理很简单,如果原先两类割边都是最小割,那么求出的最大流相等
但边权变换后只有边数小的才是最小割了

乘(E+1)是为了保证边数叠加后依然是余数,不至于影响求最小割的结果

因为假设最小割=k,那么现在新图的最小割为k*(E+1)+p,p为割的边数,本质上是,原来你割一条边,需要代价,

由于你要求边数最小 所以你多割一条边,就多一的代价,但是这个代价不足以影响到原来的代价。

原来割一条边,代价xi,现在割一条边,代价xi*A+1,只要让A>m+1,m为边数,即使割了所有的边,自己加上去的代价也就m
 
在QQ群里还看到一种解法,就是跑2次Dinic,这个显然是不对的吧。。最小割一定是满流,但是漫流的不一定是最小割吧。。。
 
#include <bits/stdc++.h>
using namespace std;
const int maxn = 410;
const int maxm = 50010;
const int inf = 0x3f3f3f3f;
struct G
{
int v, cap, next;
G() {}
G(int v, int cap, int next) : v(v), cap(cap), next(next) {}
} E[maxm];
int p[maxn], T;
int d[maxn], temp_p[maxn], qw[maxn]; //d顶点到源点的距离标号,temp_p当前狐优化,qw队列
void init()
{
memset(p, -1, sizeof(p));
T = 0;
}
void add(int u, int v, int cap)
{
E[T] = G(v, cap, p[u]);
p[u] = T++;
E[T] = G(u, 0, p[v]);
p[v] = T++;
}
bool bfs(int st, int en, int n)
{
int i, u, v, head, tail;
for(i = 0; i <= n; i++) d[i] = -1;
head = tail = 0;
d[st] = 0;
qw[tail] = st;
while(head <= tail)
{
u = qw[head++];
for(i = p[u]; i + 1; i = E[i].next)
{
v = E[i].v;
if(d[v] == -1 && E[i].cap > 0)
{
d[v] = d[u] + 1;
qw[++tail] = v;
}
}
}
return (d[en] != -1);
}
int dfs(int u, int en, int f)
{
if(u == en || f == 0) return f;
int flow = 0, temp;
for(; temp_p[u] + 1; temp_p[u] = E[temp_p[u]].next)
{
G& e = E[temp_p[u]];
if(d[u] + 1 == d[e.v])
{
temp = dfs(e.v, en, min(f, e.cap));
if(temp > 0)
{
e.cap -= temp;
E[temp_p[u] ^ 1].cap += temp;
flow += temp;
f -= temp;
if(f == 0) break;
}
}
}
return flow;
}
int dinic(int st, int en, int n)
{
int i, ans = 0;
while(bfs(st, en, n))
{
for(i = 0; i <= n; i++) temp_p[i] = p[i];
ans += dfs(st, en, inf);
}
return ans;
} int main()
{
int T, n, m;
scanf("%d", &T);
while(T--)
{
scanf("%d %d", &n,&m);
init();
int s, t;
scanf("%d %d", &s, &t);
for(int i=1; i<=m; i++){
int u, v, w;
scanf("%d %d %d", &u,&v,&w);
add(u, v, w*(m+1)+1);
}
int ans = dinic(s, t, n+1);
printf("%d\n", ans%(m+1));
}
return 0;
}

HDU 6214 Smallest Minimum Cut 最小割,权值编码的更多相关文章

  1. HDU 6214 Smallest Minimum Cut (最小割且边数最少)

    题意:给定上一个有向图,求 s - t 的最小割且边数最少. 析:设边的容量是w,边数为m,只要把每边打容量变成 w * (m+1) + 1,然后跑一个最大流,最大流%(m+1),就是答案. 代码如下 ...

  2. hdu 6214 Smallest Minimum Cut[最大流]

    hdu 6214 Smallest Minimum Cut[最大流] 题意:求最小割中最少的边数. 题解:对边权乘个比边大点的数比如300,再加1 ,最后,最大流对300取余就是边数啦.. #incl ...

  3. HDU 6214.Smallest Minimum Cut 最少边数最小割

    Smallest Minimum Cut Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Oth ...

  4. HDU 6214 Smallest Minimum Cut(最少边最小割)

    Problem Description Consider a network G=(V,E) with source s and sink t. An s-t cut is a partition o ...

  5. HDU 6214 Smallest Minimum Cut 【网络流最小割+ 二种方法只能一种有效+hdu 3987原题】

    Problem Description Consider a network G=(V,E) with source s and sink t . An s-t cut is a partition ...

  6. hdu 6214 Smallest Minimum Cut(最小割的最少边数)

    题目大意是给一张网络,网络可能存在不同边集的最小割,求出拥有最少边集的最小割,最少的边是多少条? 思路:题目很好理解,就是找一个边集最少的最小割,一个方法是在建图的时候把边的容量处理成C *(E+1 ...

  7. hdu 6214 : Smallest Minimum Cut 【网络流】

    题目链接 ISAP写法 #include <bits/stdc++.h> using namespace std; typedef long long LL; namespace Fast ...

  8. HDU 6141 I am your Father!(最小树形图+权值编码)

    http://acm.hdu.edu.cn/showproblem.php?pid=6141 题意: 求最大树形图. 思路: 把边的权值变为负值,那么这就是个最小树形图了,直接套模板就可以解决. 有个 ...

  9. POJ 2914 Minimum Cut 最小割图论

    Description Given an undirected graph, in which two vertices can be connected by multiple edges, wha ...

随机推荐

  1. Intelligent Factorial Factorization LightOJ - 1035(水题)

    就是暴力嘛...很水的一个题... 不好意思交都... #include <iostream> #include <cstdio> #include <sstream&g ...

  2. 《Linux内核设计与实现》学习总结 Chap5

    一.与内核通信 1.系统调用在用户空间进程和硬件设备之间添加了一个中间层. 作用: 1)为用户空间提供了一种硬件的抽象接口. 2)系统调用保证了系统的稳定和安全. 3)每个进程都运行在虚拟系统中,而在 ...

  3. [学习笔记]平衡树(Splay)——旋转的灵魂舞蹈家

    1.简介 首先要知道什么是二叉查找树. 这是一棵二叉树,每个节点最多有一个左儿子,一个右儿子. 它能支持查找功能. 具体来说,每个儿子有一个权值,保证一个节点的左儿子权值小于这个节点,右儿子权值大于这 ...

  4. .NET MVC 获取 当前请求的 控制器/视图/区域 的名字

    .NET MVC 在action中或过滤器中或视图中,分别如何获取  当前请求的  控制器/视图/区域  的名字 1)过滤器中的: public class CMSAttribute : Filter ...

  5. OpenCV入门指南----人脸检测

    本篇介绍图像处理与模式识别中最热门的一个领域——人脸检测(人脸识别).人脸检测可以说是学术界的宠儿,在不少EI,SCI高级别论文都能看到它的身影.甚至很多高校学生的毕业设计都会涉及到人脸检测.当然人脸 ...

  6. 3 Kafka两个版本在Zookeeper的元数据存储

    0.8 [consumers, admin, config, controller, brokers, controller_epoch] 这些节点都归于谁管理 consumers: 0.8版本的客户 ...

  7. 关于720p和1080p观看距离和效果

    分类: 不同分辩率的信号源,对观看距离的要求是不同的.在标清时代,看电视台的画面,要离得好鬼远,否则就会觉得画面粗糙闪炼唔舒服.720P及1080P的观看距离又应该点样呢?系唔系买个50寸的平板电视要 ...

  8. Sensor信号输出YUV、RGB、RAW DATA、JPEG 4种方式区别

    简单来说,YUV: luma (Y) + chroma (UV) 格式, 一般情况下sensor支持YUV422格式,即数据格式是按Y-U-Y-V次序输出的RGB: 传统的红绿蓝格式,比如RGB565 ...

  9. SQL on Hadoop中用到的主要技术——MPP vs Runtime Framework

    转载声明 本文转载自盘点SQL on Hadoop中用到的主要技术,个人觉得该文章对于诸如Impala这样的MPP架构的SQL引擎和Runtime Framework架构的Hive/Spark SQL ...

  10. 针对TCP连接异常断开的分析

    我们知道,一个基于TCP/IP的客户端-服务器的程序中,正常情况下,我会是启动服务器使其在一个端口上监听请求,等待客户端的连接:通过TCP的三次握手,客户端能够通过socket建立一个到服务器的连接: ...