HDU 6214 Smallest Minimum Cut 最小割,权值编码
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6214
题意:求边数最小的割。
解法:
建边的时候每条边权 w = w * (E + 1) + 1;
这样得到最大流 maxflow / (E + 1) ,最少割边数 maxflow % (E + 1)
但边权变换后只有边数小的才是最小割了
乘(E+1)是为了保证边数叠加后依然是余数,不至于影响求最小割的结果
因为假设最小割=k,那么现在新图的最小割为k*(E+1)+p,p为割的边数,本质上是,原来你割一条边,需要代价,
#include <bits/stdc++.h>
using namespace std;
const int maxn = 410;
const int maxm = 50010;
const int inf = 0x3f3f3f3f;
struct G
{
int v, cap, next;
G() {}
G(int v, int cap, int next) : v(v), cap(cap), next(next) {}
} E[maxm];
int p[maxn], T;
int d[maxn], temp_p[maxn], qw[maxn]; //d顶点到源点的距离标号,temp_p当前狐优化,qw队列
void init()
{
memset(p, -1, sizeof(p));
T = 0;
}
void add(int u, int v, int cap)
{
E[T] = G(v, cap, p[u]);
p[u] = T++;
E[T] = G(u, 0, p[v]);
p[v] = T++;
}
bool bfs(int st, int en, int n)
{
int i, u, v, head, tail;
for(i = 0; i <= n; i++) d[i] = -1;
head = tail = 0;
d[st] = 0;
qw[tail] = st;
while(head <= tail)
{
u = qw[head++];
for(i = p[u]; i + 1; i = E[i].next)
{
v = E[i].v;
if(d[v] == -1 && E[i].cap > 0)
{
d[v] = d[u] + 1;
qw[++tail] = v;
}
}
}
return (d[en] != -1);
}
int dfs(int u, int en, int f)
{
if(u == en || f == 0) return f;
int flow = 0, temp;
for(; temp_p[u] + 1; temp_p[u] = E[temp_p[u]].next)
{
G& e = E[temp_p[u]];
if(d[u] + 1 == d[e.v])
{
temp = dfs(e.v, en, min(f, e.cap));
if(temp > 0)
{
e.cap -= temp;
E[temp_p[u] ^ 1].cap += temp;
flow += temp;
f -= temp;
if(f == 0) break;
}
}
}
return flow;
}
int dinic(int st, int en, int n)
{
int i, ans = 0;
while(bfs(st, en, n))
{
for(i = 0; i <= n; i++) temp_p[i] = p[i];
ans += dfs(st, en, inf);
}
return ans;
} int main()
{
int T, n, m;
scanf("%d", &T);
while(T--)
{
scanf("%d %d", &n,&m);
init();
int s, t;
scanf("%d %d", &s, &t);
for(int i=1; i<=m; i++){
int u, v, w;
scanf("%d %d %d", &u,&v,&w);
add(u, v, w*(m+1)+1);
}
int ans = dinic(s, t, n+1);
printf("%d\n", ans%(m+1));
}
return 0;
}
HDU 6214 Smallest Minimum Cut 最小割,权值编码的更多相关文章
- HDU 6214 Smallest Minimum Cut (最小割且边数最少)
题意:给定上一个有向图,求 s - t 的最小割且边数最少. 析:设边的容量是w,边数为m,只要把每边打容量变成 w * (m+1) + 1,然后跑一个最大流,最大流%(m+1),就是答案. 代码如下 ...
- hdu 6214 Smallest Minimum Cut[最大流]
hdu 6214 Smallest Minimum Cut[最大流] 题意:求最小割中最少的边数. 题解:对边权乘个比边大点的数比如300,再加1 ,最后,最大流对300取余就是边数啦.. #incl ...
- HDU 6214.Smallest Minimum Cut 最少边数最小割
Smallest Minimum Cut Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Oth ...
- HDU 6214 Smallest Minimum Cut(最少边最小割)
Problem Description Consider a network G=(V,E) with source s and sink t. An s-t cut is a partition o ...
- HDU 6214 Smallest Minimum Cut 【网络流最小割+ 二种方法只能一种有效+hdu 3987原题】
Problem Description Consider a network G=(V,E) with source s and sink t . An s-t cut is a partition ...
- hdu 6214 Smallest Minimum Cut(最小割的最少边数)
题目大意是给一张网络,网络可能存在不同边集的最小割,求出拥有最少边集的最小割,最少的边是多少条? 思路:题目很好理解,就是找一个边集最少的最小割,一个方法是在建图的时候把边的容量处理成C *(E+1 ...
- hdu 6214 : Smallest Minimum Cut 【网络流】
题目链接 ISAP写法 #include <bits/stdc++.h> using namespace std; typedef long long LL; namespace Fast ...
- HDU 6141 I am your Father!(最小树形图+权值编码)
http://acm.hdu.edu.cn/showproblem.php?pid=6141 题意: 求最大树形图. 思路: 把边的权值变为负值,那么这就是个最小树形图了,直接套模板就可以解决. 有个 ...
- POJ 2914 Minimum Cut 最小割图论
Description Given an undirected graph, in which two vertices can be connected by multiple edges, wha ...
随机推荐
- MT【138】对称乎?
已知\(a+b=1\),求\((a^3+1)(b^3+1)\)的最大值______ : 解答: \[ \begin{align*} (a^3+1)(b^3+1) &=a^3+b^3+a^3+b ...
- 配置nginx为FastDFS的storage server提供http访问接口
1.拉取模块代码 # git clone https://github.com/happyfish100/fastdfs-nginx-module.git 2.编译安装nginx,添加支持fastdf ...
- 正确理解 LEAL (Load Effective Address) 指令
LEAL: leal S, D -> D ← &S 在 CSAPP (Computer Systems: A Programmer’s Perspective) 中,对 LE ...
- bzoj1027【JSOI2007】合金
题目描述 某公司加工一种由铁.铝.锡组成的合金.他们的工作很简单.首先进口一些铁铝锡合金原材料,不同种类的原材料中铁铝锡的比重不同.然后,将每种原材料取出一定量,经过融解.混合,得到新的合金.新的合金 ...
- 利用Confluence搭建企业Wiki
Confluence安装与部署 下载安装包及破解包 安装包下载地址:https://www.atlassian.com/software/confluence/download-archives 破解 ...
- GO_01:Linux-CentOS之Go语言环境配置
1.下载安装 下载当前最新版本,通过wget命令,当然你也可以手动下载之后再传入到Linux中,都可以. 本文安装的是1.8版本.由于Go语言的要求,需要配置gopath,而对应再gopath里按照g ...
- U33405 纽约
U33405 纽约 花费 \(w\) 元可以购买一辆容量为 \(w\) 的车 现在你有 \(n <= 2000\) 个物品, 搬运策略: 一直搬能放下里面最重的, 直到任意物品都不能搬上为止 求 ...
- html5 +css3 点击后水波纹扩散效果 兼容移动端
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...
- Block的copy时机
什么时候栈上的Block会复制到堆上呢? 1.调用Block的copy实例方法 2.Block作为函数返回值返回时 3.将Block赋值给附有__strong修饰符id类型的类或Block类型成员变量 ...
- elk定时清理日志
#!/bin/bash shijian=`date +%Y.%m.%d -d "5 days ago"` #echo $shijian curl -XDELETE "10 ...