Barricade

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2227    Accepted Submission(s): 655

Problem Description
The empire is under attack again. The general of empire is planning to defend his castle. The land can be seen as N towns and M roads, and each road has the same length and connects two towns. The town numbered 1 is where general's castle is located, and the town numbered N is where the enemies are staying. The general supposes that the enemies would choose a shortest path. He knows his army is not ready to fight and he needs more time. Consequently he decides to put some barricades on some roads to slow down his enemies. Now, he asks you to find a way to set these barricades to make sure the enemies would meet at least one of them. Moreover, the barricade on the i-th road requires wi units of wood. Because of lacking resources, you need to use as less wood as possible.
 
Input
The first line of input contains an integer t, then t test cases follow.
For each test case, in the first line there are two integers N(N≤1000) and M(M≤10000).
The i-the line of the next M lines describes the i-th edge with three integers u,v and w where 0≤w≤1000 denoting an edge between u and v of barricade cost w.
 
Output
For each test cases, output the minimum wood cost.
 
Sample Input
1
4 4
1 2 1
2 4 2
3 1 3
4 3 4
 
Sample Output
4
 
Source
 
注意审题
题中说的是敌人会走最短的路 所以我们把所有的最短路都拿出来 跑一边最大流即可
怎样把所有的最短路拿出来 跑一边最短路即可。。。因为跑完之后 起点和终点之间的所有的最短路 可以通过判断 d[e.v] == d[e.u] + 1 来进行建网络流的图
注意建网络流图的方式 不然会t
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int head[maxn], head2[maxn], dis[maxn], d[maxn], vis[maxn], cur[maxn];
int cnt, cnt2;
int n, m, s, t; struct node
{
int u, v, w, c, next;
}Node[maxn<<]; void add_(int u, int v, int w, int c)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].w = w;
Node[cnt].c = c;
Node[cnt].next = head[u];
head[u] = cnt++;
} void add(int u, int v, int w, int c)
{
add_(u, v, w, c);
add_(v, u, w, c);
} void spfa()
{
for(int i=; i<=n; i++) dis[i] = INF;
mem(vis, );
queue<int> Q;
Q.push(s);
vis[s] = ;
dis[s] = ;
while(!Q.empty())
{
int u = Q.front(); Q.pop();
vis[u] = ;
for(int i=head[u]; i!=-; i=Node[i].next)
{
node e = Node[i];
if(dis[e.v] > dis[u] + e.w)
{
dis[e.v] = dis[u] + e.w;
if(!vis[e.v])
{
vis[e.v] = ;
Q.push(e.v);
}
}
}
}
} struct edge
{
int u, v, c, next;
}Edge[maxn<<]; void add_edge(int u, int v, int c)
{
Edge[cnt2].u = u;
Edge[cnt2].v = v;
Edge[cnt2].c = c;
Edge[cnt2].next = head2[u];
head2[u] = cnt2++;
} void add_Edge(int u, int v, int c)
{
add_edge(u, v, c);
add_edge(v, u, );
} bool bfs()
{
queue<int> Q;
mem(d, );
Q.push(s);
d[s] = ;
while(!Q.empty())
{
int u = Q.front(); Q.pop();
for(int i=head2[u]; i!=-; i=Edge[i].next)
{
edge e = Edge[i];
if(!d[e.v] && e.c > )
{
d[e.v] = d[e.u] + ;
Q.push(e.v);
if(e.v == t) return ;
}
}
}
return d[t] != ;
} int dfs(int u, int cap)
{
int ret = , V;
if(u == t || cap == )
return cap;
for(int &i=cur[u]; i!=-; i=Edge[i].next)
{
edge e = Edge[i];
if(d[e.v] == d[e.u] + && e.c > )
{
int V = dfs(e.v, min(cap, e.c));
Edge[i].c -= V;
Edge[i^].c += V;
ret += V;
cap -= V;
if(cap == ) break;
}
}
if(cap > ) d[u] = -;
return ret;
} int dinic(int u)
{
int ans = ;
while(bfs())
{
memcpy(cur, head2, sizeof(head2));
ans += dfs(u, INF);
}
return ans;
} void build()
{
for(int i=; i<=n; i++)
for(int j=head[i]; j!=-; j=Node[j].next)
{
node e = Node[j];
if(dis[e.v] == dis[e.u] + )
add_Edge(e.u, e.v, e.c);
}
} int main()
{
int T;
rd(T);
while(T--)
{
mem(head, -);
mem(head2, -);
cnt = cnt2 = ;
rd(n); rd(m);
rep(i, , m)
{
int u, v, c;
scanf("%d%d%d", &u, &v, &c);
add(u, v, , c);
}
s = , t = n;
spfa();
build();
printf("%d\n", dinic(s));
}
return ;
}
 
 
 

Barricade HDU - 5889(最短路+最小割)的更多相关文章

  1. 【bzoj1266】[AHOI2006]上学路线route 最短路+最小割

    题目描述 可可和卡卡家住合肥市的东郊,每天上学他们都要转车多次才能到达市区西端的学校.直到有一天他们两人参加了学校的信息学奥林匹克竞赛小组才发现每天上学的乘车路线不一定是最优的. 可可:“很可能我们在 ...

  2. HDU 5889 Barricade(最短路+最小割水题)

    Barricade Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total ...

  3. HDU 5889 Barricade(最短路+最小割)

    http://acm.hdu.edu.cn/showproblem.php?pid=5889 题意: 给出一个图,帝国将军位于1处,敌军位于n处,敌军会选择最短路到达1点.现在帝国将军要在路径上放置障 ...

  4. hdu 3870(平面图最小割转最短路)

    Catch the Theves Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 65768/32768 K (Java/Others) ...

  5. hdu 6852Path6(最短路+最小割)

    传送门 •题意 有n个城市,标号1-n 现花费最小的代价堵路 使得从1号城市到n号城市的路径边长 (注意只是变长不是最长) 堵一条路的代价是这条路的权值 •思路 在堵路以前,从1到n的最小路径当然是最 ...

  6. [2019杭电多校第一场][hdu6582]Path(最短路&&最小割)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6582 题意:删掉边使得1到n的最短路改变,删掉边的代价为该边的边权.求最小代价. 比赛时一片浆糊,赛后 ...

  7. hdu 4289 Control(最小割 + 拆点)

    http://acm.hdu.edu.cn/showproblem.php?pid=4289 Control Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  8. 【求出所有最短路+最小割】【多校第一场】【G题】

    题意 A从1要追在N的 B 只能走最短的路 问B最少切断多少条路可以让A不能过来 问B最多切断多少条路A还是能过来 对于1 求出1到N的所有最短路的路径,对其求最小割 对于2 求出长度最小的最短路即可 ...

  9. BZOJ1266 AHOI2006上学路线(最短路+最小割)

    求出最短路后找出可能在最短路上的边,显然割完边后我们需要让图中这样的边无法构成1到n的路径,最小割即可,非常板子. #include<iostream> #include<cstdi ...

  10. HDU 4859 海岸线(最小割+最大独立点权变形)

    http://acm.hdu.edu.cn/showproblem.php?pid=4859 题意: 欢迎来到珠海!由于土地资源越来越紧张,使得许多海滨城市都只能依靠填海来扩展市区以求发展.作为Z市的 ...

随机推荐

  1. 2018年美国大学生数学建模竞赛(MCM/ICM) B题解题思路

    老套路,把我们在解决B题时候采用的思路分享给大家,希望大家能学到点东西~~~ B题思路整理:Part1:先整理出说某种语言多的十个国家给找出来,或者说是把十种语言对应的国家找出来 然后再对各个国家的人 ...

  2. k8s常用命令记录

    目录 kubectl常用命令 kubectl get pod -n dev 查看日志 查看pod详情 删除pod 删除job 进入pod里面 查看namespace 创建namespace 删除nam ...

  3. 180804-Spring之动态注册bean

    Spring之动态注册bean 什么场景下,需要主动向Spring容器注册bean呢? 如我之前做个的一个支持扫表的基础平台,使用者只需要添加基础配置 + Groovy任务,就可以丢到这个平台上面来运 ...

  4. Docker Manager for Docker Swarm deploy

    一.Swarm概述 Swarm是Docker公司在2014年12月初发布的一套较为简单的工具,用来管理Docker集群,它将一群Docker宿主机变成一个单一的,虚拟的主机.Swarm使用标准的Doc ...

  5. halcon算子之tuple_gen_const,用于生成特定长度的元组并且初始化其元素

    原文地址:http://blog.sina.com.cn/s/blog_d38f8be50102wczk.html 函数原型: tuple_gen_const(: : Length, Const : ...

  6. Unity_屏幕/Viewport/世界坐标的转换

    Unity_屏幕/Viewport/世界/UI坐标的转换 参考: https://www.jianshu.com/p/b5b6ac9ab145 -- 世界.视口.屏幕坐标转换 https://docs ...

  7. Python输出格式全总结

    输入输出 有几种方法可以显示程序的输出:数据可以以人类可读的形式打印出来,或者写入文件以供将来使用.本章将讨论一些可能性. 更漂亮的输出格式 到目前为止,我们遇到了两种写入值的方法:表达式语句 和 p ...

  8. 学习python最难的就是入门,而这文章刚好适合初学者!

    Python可以应用于众多领域,如:数据分析.组件集成.网络服务.图像处理.数值计算和科学计算等众多领域.目前业内几乎所有大中型互联网企业都在使用Python,如:Youtube.Dropbox.BT ...

  9. JDK自带的监控工具方法

    一.概述       SUN 的JDK中的几个工具,非常好用.秉承着有免费,不用商用的原则.以下简单介绍一下这几种工具.(注:本文章下的所有工具都存在JDK5.0以上版本的工具集里(jdk的bin目录 ...

  10. 【quickhybrid】组件(自定义)API的实现

    前言 前文在API规划时就已经有提到过组件API这个概念,本文将会介绍它的原理以及实现 理解组件API这个概念 quick.ui.xxx quick.page.xxx 在quick hybrid中,A ...