贪心 uvaoj 11134 Fabled Rooks
Problem F: Fabled Rooks
We would like to place n rooks, 1 ≤ n ≤ 5000, on a n×n board subject to the following restrictions
- The i-th rook can only be placed within the rectangle given by its left-upper corner (xli, yli) and its right-lower corner (xri, yri), where 1 ≤ i ≤ n, 1 ≤ xli ≤ xri ≤ n, 1 ≤ yli ≤ yri ≤ n.
- No two rooks can attack each other, that is no two rooks can occupy the same column or the same row.
The input consists of several test cases. The first line of each of them contains one integer number, n, the side of the board. n lines follow giving the rectangles where the rooks can be placed as described above. The i-th line among them gives xli, yli, xri, and yri. The input file is terminated with the integer `0' on a line by itself.
Your task is to find such a placing of rooks that the above conditions are satisfied and then output n lines each giving the position of a rook in order in which their rectangles appeared in the input. If there are multiple solutions, any one will do. Output IMPOSSIBLE if there is no such placing of the rooks.
Sample input
8
1 1 2 2
5 7 8 8
2 2 5 5
2 2 5 5
6 3 8 6
6 3 8 5
6 3 8 8
3 6 7 8
8
1 1 2 2
5 7 8 8
2 2 5 5
2 2 5 5
6 3 8 6
6 3 8 5
6 3 8 8
3 6 7 8
0
Output for sample input
1 1
5 8
2 4
4 2
7 3
8 5
6 6
3 7
1 1
5 8
2 4
4 2
7 3
8 5
6 6
3 7
对于一个N*N的棋盘,求放置N个有放置范围的车的一种方案,要求车不能相互攻击。
这题有一个很巧妙的性质:行和列是不相关联的,考虑处理两次,贪心即可。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=; int L[maxn],R[maxn],U[maxn],D[maxn],P[maxn];
int X[maxn],Y[maxn];
bool cmp1(int a,int b){
if(R[a]!=R[b])return R[a]<R[b];
return L[a]<L[b];
} bool cmp2(int a,int b){
if(D[a]!=D[b])return D[a]<D[b];
return U[a]<U[b];
}
bool vis[maxn];
int main(){
int n,cnt;
while(~scanf("%d",&n)&&n){
for(int i=;i<=n;i++)
scanf("%d%d%d%d",&U[i],&L[i],&D[i],&R[i]);
for(int i=;i<=n;i++)P[i]=i;
bool OK=true,flag;
sort(P+,P+n+,cmp1);
memset(vis,,sizeof(vis));cnt=;
for(int i=,j;i<=n;i++){
while(vis[P[cnt]])cnt++;flag=false;
for(j=cnt;j<=n;j++)
if(!vis[P[j]]&&i<=R[P[j]]&&i>=L[P[j]]){
flag=true;
break;
}
OK&=flag;
if(!OK)break;
Y[P[j]]=i;
vis[P[j]]=true;
}
sort(P+,P+n+,cmp2);
memset(vis,,sizeof(vis));cnt=;
for(int i=,j;i<=n;i++){
while(vis[P[cnt]])cnt++;flag=false;
for(j=cnt;j<=n;j++)
if(!vis[P[j]]&&i<=D[P[j]]&&i>=U[P[j]]){
flag=true;
break;
}
OK&=flag;
if(!OK)break;
X[P[j]]=i;
vis[P[j]]=true;
}
if(OK){
for(int i=;i<=n;i++)
printf("%d %d\n",X[i],Y[i]);
}
else
printf("IMPOSSIBLE\n");
}
return ;
}
贪心 uvaoj 11134 Fabled Rooks的更多相关文章
- UVA - 11134 Fabled Rooks[贪心 问题分解]
UVA - 11134 Fabled Rooks We would like to place n rooks, 1 ≤ n ≤ 5000, on a n × n board subject to t ...
- uva 11134 - Fabled Rooks(问题转换+优先队列)
题目链接:uva 11134 - Fabled Rooks 题目大意:给出n,表示要在n*n的矩阵上放置n个车,并且保证第i辆车在第i个区间上,每个区间给出左上角和右小角的坐标.另要求任意两个车之间不 ...
- uva 11134 fabled rooks (贪心)——yhx
We would like to place n rooks, 1 n 5000, on a n nboard subject to the following restrictions• The i ...
- UVA 11134 - Fabled Rooks(贪心+优先队列)
We would like to place n rooks, 1 ≤ n ≤ 5000, on a n×n board subject to the following restrict ...
- UVa 11134 - Fabled Rooks 优先队列,贪心 难度: 0
题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...
- UVa 11134 Fabled Rooks(贪心)
题目链接 题意 在n*n的棋盘上的n个指定区间上各放1个'车’ , 使他们相互不攻击(不在同行或同列),输出一种可能的方法. 分析 每行每列都必须放车,把行列分开看,若行和列同时有解,则问题有解. ...
- UVA 11134 Fabled Rooks(贪心的妙用+memset误用警示)
题目链接: https://cn.vjudge.net/problem/UVA-11134 /* 问题 输入棋盘的规模和车的数量n(1=<n<=5000),接着输入n辆车的所能在的矩阵的范 ...
- UVa 11134 Fabled Rooks (贪心+问题分解)
题意:在一个n*n的棋盘上放n个车,让它们不互相攻击,并且第i辆车在给定的小矩形内. 析:说实话,一看这个题真是没思路,后来看了分析,原来这个列和行是没有任何关系的,我们可以分开看, 把它变成两个一维 ...
- UVA 11134 Fabled Rooks 贪心
题目链接:UVA - 11134 题意描述:在一个n*n(1<=n<=5000)的棋盘上放置n个车,每个车都只能在给定的一个矩形里放置,使其n个车两两不在同一行和同一列,判断并给出解决方案 ...
随机推荐
- 零基础学习云计算及大数据DBA集群架构师【预科2015年12月14日周一】
1.第一天比较轻松,上午填表格,录指纹,拍照片,做自我介绍. 2.下午老师简单介绍了一下PC\交换机\路由器\塔式服务器\机架式服务器(1U\2U)\刀片服务器\磁带机 3.班主任陈老师朱老师,预科秦 ...
- .NET Core的介绍
ASP.NET5应用程序默认使用.net core来构建应用程序,.net core是一个小的,优化过的.net运行时应用程序. 1. 什么是的.NET Core .NET Core 5 是一由模块化 ...
- Android中的Adapter 详解
http://blog.csdn.net/tianfeng701/article/details/7557819 (一) Adapter介绍 Android是完全遵循MVC模式设计的框架,Activi ...
- 【转】 iOS开发之手势gesture详解
原文:http://www.cnblogs.com/salam/archive/2013/04/30/iOS_gesture.html 前言 在iOS中,你可以使用系统内置的手势识别 (Gesture ...
- 读懂IL代码(一)
以前刚开始学C#的时候,总有高手跟我说,去了解一下IL代码吧,看懂了你能更加清楚的知道你写出来的代码是如何运行互相调用的,可是那时候没去看,后来补的,其实感觉也不晚.刚开始看IL代码的时候,感觉非常吃 ...
- Javascript基础(2)
开始更咯~~~嘻嘻. ---------------------------------------------------------------------------------- 异常捕获:即 ...
- java操作excel常用的两种方式
Excel是我们平时工作中比较常用的用于存储二维表数据的,JAVA也可以直接对Excel进行操作,在这篇博客中将为大家介绍两种操作Excel的方式,分别为:jxl和poi. 对于两者的区别网上有测试如 ...
- SGU 152.Making round
不断向下取直到,忽略的数累计到一个百分比,给当前百分比加1. 这道题要避免处理浮点数,用余数来处理,不然会wa 9 #include <iostream> #include <cma ...
- 【POJ2887】【块状链表】Big String
Description You are given a string and supposed to do some string manipulations. Input The first lin ...
- css3字阴影text-shadow
看到text-shadow这句代码,眼尖的同学是不是觉得很熟悉?没错,前面我们已经学习过<css3基础教程五边框box-shadow>,而且这两者非常相近,只要以前的课程学好了,text- ...