布隆过滤器(Bloom Filter)的原理和实现
什么情况下需要布隆过滤器?
先来看几个比较常见的例子
- 字处理软件中,需要检查一个英语单词是否拼写正确
- 在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上
- 在网络爬虫里,一个网址是否被访问过
- yahoo, gmail等邮箱垃圾邮件过滤功能
这几个例子有一个共同的特点: 如何判断一个元素是否存在一个集合中?
常规思路
- 数组
- 链表
- 树、平衡二叉树、Trie
- Map (红黑树)
- 哈希表
虽然上面描述的这几种数据结构配合常见的排序、二分搜索可以快速高效的处理绝大部分判断元素是否存在集合中的需求。但是当集合里面的元素数量足够大,如果有500万条记录甚至1亿条记录呢?这个时候常规的数据结构的问题就凸显出来了。数组、链表、树等数据结构会存储元素的内容,一旦数据量过大,消耗的内存也会呈现线性增长,最终达到瓶颈。有的同学可能会问,哈希表不是效率很高吗?查询效率可以达到O(1)。但是哈希表需要消耗的内存依然很高。使用哈希表存储一亿 个垃圾 email 地址的消耗?哈希表的做法:首先,哈希函数将一个email地址映射成8字节信息指纹;考虑到哈希表存储效率通常小于50%(哈希冲突);因此消耗的内存:8 * 2 * 1亿 字节 = 1.6G 内存,普通计算机是无法提供如此大的内存。这个时候,布隆过滤器(Bloom Filter)就应运而生。在继续介绍布隆过滤器的原理时,先讲解下关于哈希函数的预备知识。
哈希函数
哈希函数的概念是:将任意大小的数据转换成特定大小的数据的函数,转换后的数据称为哈希值或哈希编码。下面是一幅示意图:

可以明显的看到,原始数据经过哈希函数的映射后称为了一个个的哈希编码,数据得到压缩。哈希函数是实现哈希表和布隆过滤器的基础。
布隆过滤器介绍
- 巴顿.布隆于一九七零年提出
- 一个很长的二进制向量 (位数组)
- 一系列随机函数 (哈希)
- 空间效率和查询效率高
- 有一定的误判率(哈希表是精确匹配)
布隆过滤器原理
布隆过滤器(Bloom Filter)的核心实现是一个超大的位数组和几个哈希函数。假设位数组的长度为m,哈希函数的个数为k

以上图为例,具体的操作流程:假设集合里面有3个元素{x, y, z},哈希函数的个数为3。首先将位数组进行初始化,将里面每个位都设置位0。对于集合里面的每一个元素,将元素依次通过3个哈希函数进行映射,每次映射都会产生一个哈希值,这个值对应位数组上面的一个点,然后将位数组对应的位置标记为1。查询W元素是否存在集合中的时候,同样的方法将W通过哈希映射到位数组上的3个点。如果3个点的其中有一个点不为1,则可以判断该元素一定不存在集合中。反之,如果3个点都为1,则该元素可能存在集合中。注意:此处不能判断该元素是否一定存在集合中,可能存在一定的误判率。可以从图中可以看到:假设某个元素通过映射对应下标为4,5,6这3个点。虽然这3个点都为1,但是很明显这3个点是不同元素经过哈希得到的位置,因此这种情况说明元素虽然不在集合中,也可能对应的都是1,这是误判率存在的原因。
布隆过滤器添加元素
- 将要添加的元素给k个哈希函数
- 得到对应于位数组上的k个位置
- 将这k个位置设为1
布隆过滤器查询元素
- 将要查询的元素给k个哈希函数
- 得到对应于位数组上的k个位置
- 如果k个位置有一个为0,则肯定不在集合中
- 如果k个位置全部为1,则可能在集合中
布隆过滤器实现
下面给出python的实现,使用murmurhash算法
import mmh3
from bitarray import bitarray
# zhihu_crawler.bloom_filter
# Implement a simple bloom filter with murmurhash algorithm.
# Bloom filter is used to check wether an element exists in a collection, and it has a good performance in big data situation.
# It may has positive rate depend on hash functions and elements count.
BIT_SIZE = 5000000
class BloomFilter:
def __init__(self):
# Initialize bloom filter, set size and all bits to 0
bit_array = bitarray(BIT_SIZE)
bit_array.setall(0)
self.bit_array = bit_array
def add(self, url):
# Add a url, and set points in bitarray to 1 (Points count is equal to hash funcs count.)
# Here use 7 hash functions.
point_list = self.get_postions(url)
for b in point_list:
self.bit_array[b] = 1
def contains(self, url):
# Check if a url is in a collection
point_list = self.get_postions(url)
result = True
for b in point_list:
result = result and self.bit_array[b]
return result
def get_postions(self, url):
# Get points positions in bit vector.
point1 = mmh3.hash(url, 41) % BIT_SIZE
point2 = mmh3.hash(url, 42) % BIT_SIZE
point3 = mmh3.hash(url, 43) % BIT_SIZE
point4 = mmh3.hash(url, 44) % BIT_SIZE
point5 = mmh3.hash(url, 45) % BIT_SIZE
point6 = mmh3.hash(url, 46) % BIT_SIZE
point7 = mmh3.hash(url, 47) % BIT_SIZE
return [point1, point2, point3, point4, point5, point6, point7]
源码地址:https://github.com/cpselvis/zhihu-crawler/blob/master/bloom_filter.py
布隆过滤器(Bloom Filter)的原理和实现的更多相关文章
- [转载]布隆过滤器(Bloom Filter)
[转载]布隆过滤器(Bloom Filter) 这部分学习资料来源:https://www.youtube.com/watch?v=v7AzUcZ4XA4 Filter判断不在,那就是肯定不在:Fil ...
- url去重 --布隆过滤器 bloom filter原理及python实现
https://blog.csdn.net/a1368783069/article/details/52137417 # -*- encoding: utf-8 -*- ""&qu ...
- 【面试突击】-缓存击穿(布隆过滤器 Bloom Filter)
原文地址:https://blog.csdn.net/fouy_yun/article/details/81075432 前面的文章介绍了缓存的分类和使用的场景.通常情况下,缓存是加速系统响应的一种途 ...
- 布隆过滤器 Bloom Filter 2
date: 2020-04-01 17:00:00 updated: 2020-04-01 17:00:00 Bloom Filter 布隆过滤器 之前的一版笔记 点此跳转 1. 什么是布隆过滤器 本 ...
- 布隆过滤器(Bloom Filter)详解——基于多hash的概率查找思想
转自:http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html 布隆过滤器[1](Bloom Filter)是由布隆(Burton ...
- [转载] 布隆过滤器(Bloom Filter)详解
转载自http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html 布隆过滤器[1](Bloom Filter)是由布隆(Burton ...
- 布隆过滤器(Bloom Filter)详解
直观的说,bloom算法类似一个hash set,用来判断某个元素(key)是否在某个集合中.和一般的hash set不同的是,这个算法无需存储key的值,对于每个key,只需要k个比特位,每个存储一 ...
- 浅谈布隆过滤器Bloom Filter
先从一道面试题开始: 给A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL. 这个问题的本质在于判断一个元素是否在一个集合中.哈希表以O(1) ...
- 布隆过滤器(Bloom Filter)-学习笔记-Java版代码(挖坑ing)
布隆过滤器解决"面试题: 如何建立一个十亿级别的哈希表,限制内存空间" "如何快速查询一个10亿大小的集合中的元素是否存在" 如题 布隆过滤器确实很神奇, 简单 ...
随机推荐
- 一个简单的WebService实例
WebService在.NET平台下的作用是在不同应用程序间共享数据与数据交换. 要达到这样的目标,Web services要使用两种技术: XML(标准通用标记语言下的一个子集):XML是在web上 ...
- 本地化web开发的一个例子-jquery.i18n.properties
关键字:Web本地化, jquery,jquery.i18n.properties. 运行环境:Chrome, IE. 本文介绍使用jquery.i18n.properties对网站前端实现本地化,支 ...
- 自己写的Python数据库连接类和sql语句拼接方法
这个工具类十分简单和简洁. sql拼接方法 # encoding=utf-8 from django.http import HttpResponse from anyjson import seri ...
- C#细节忽略的问题:int 与 int?
int 与 int? 天天都在看,却不知道这2有什么区别呢? 首先说明下这个?的由来吧:C#值类型使不可谓null的,但是sql server的 int 确是可以为null的. 废话不多说直接上代码 ...
- ARM的工作环境和工作模式
工作环境: 可以称之为“数据环境,”数据总线16位或者32位,应用于不同的情况下.16位的情况下,工作速度快,代码密度高. 工作模式: 设置程序数据所处的状态,为移植操作系统提供方便.
- 一步步学习ASP.NET MVC3 (12)——FileResult
请注明转载地址:http://www.cnblogs.com/arhat 忙了两天,本来老魏昨天就应该写出新的文章,但是由于昨天雨夹雪而且加上昨天晚上加了班,到家都没饭吃了,一看时间都9点了,什么饭店 ...
- dos下的edit命令使用详解
dos下的edit命令使用详解 来源:网络 作者:未知 edit命令是一个简单的编辑软件,我们经常用它来编辑一些程序和批处理文件. 比如,我想在c盘根目录下编辑一个简单的批处理文件,要求无论当前盘和当 ...
- portlet初学习及HelloWorld例子
1. 在myeclipse中新建一个web project,在src中新建如下类: package com.yoyo.portlet; import java.io.IOException; impo ...
- CentOS搭建OpenVPN服务(简易版)
OpenVPN服务端配置 1. 安装OpenVPN软件包 默认的Centos软件源里面没有OpenVPN的软件包,我们可以添加rpmforge的repo,从而实现yum安装openvpn 针对Cent ...
- JAVA自学之-----FileInputStream类
1, FileInputStream类函数创建: package coreJava; import java.io.FileInputStream; import java.io.IOExceptio ...