poj 2749 Building roads (二分+拆点+2-sat)
|
Building roads
Description
Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must build N * (N - 1) / 2
roads, which is so costly that cheapskate John will never do that, though that's the best choice for the cows. Clever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair of barns will be connected by the roads. To make the cows don't spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns. That's not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can't connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must decide which transferring point each barn should connect to. We have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other. Note that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1 - y2|. Input
The first line of input consists of 3 integers N, A and B (2 <= N <= 500, 0 <= A <= 1000, 0 <= B <= 1000), which are the number of barns, the number of pairs of barns in which the cows hate each other and the number of pairs of barns in which the cows are friends
with each other. Next line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively. Each of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one. Each of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other. The same pair of barns never appears more than once. Each of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once. You should note that all the coordinates are in the range [-1000000, 1000000]. Output
You just need output a line containing a single integer, which represents the maximum of the distances between every pair of barns, if John selects the optimal road-building scheme. Note if there is no feasible solution, just output -1.
Sample Input 4 1 1 Sample Output 53246 Source
POJ Monthly--2006.01.22,zhucheng
|
题意:
有 N 个牛栏,如今通过一条通道(s1,s2)把他们连起来,他们之间有一些约束关系,一些牛栏不能连在同一个点,一些牛栏必须连在同一个点,如今问有没有可能把他们都连好,并且满足全部的约束关系,假设能够,输出两个牛栏之间距离最大值的最小情况。
思路:
二分枚举最长距离。用2SAT推断可行与否。最后输出答案,假设没有,那么输出-1
条件1 i,j 相互讨厌, <i,j+n> <i+n,j> <j,i+n> <j+n,i>
条件2 i,j 关系好 <i,j> <j,i> <j+n,i+n> <i+n,j+n>
条件3
1:dis(i,s1) + dis(j,s1)>m <i,j+n> <j,i+n>
2:i j都连s2的时候与上面类似
3:dis(i,s1)+dis(s1,s2)+dis(s2,j)>m <i,j> <j+n,i+n>
4:i连s2 j连s1条件与上面类似
代码:
#include <cstdio>
#include <cstring>
#define INF 0x3f3f3f3f
#define maxn 1005
#define MAXN 4000005
using namespace std; int n,m1,m2,num,flag,ans,tot;
int head[maxn],X[2005],Y[2005],dist1[maxn],dist2[maxn];
int scc[maxn];
int vis[maxn];
int stack1[maxn];
int stack2[maxn];
struct edge
{
int v,next;
} g[MAXN]; void init()
{
memset(head,0,sizeof(head));
memset(vis,0,sizeof(vis));
memset(scc,0,sizeof(scc));
stack1[0] = stack2[0] = num = 0;
flag = 1;
}
void addedge(int u,int v)
{
num++;
g[num].v = v;
g[num].next = head[u];
head[u] = num;
}
int abs(int x)
{
if(x>=0) return x;
return -x;
}
int caldist(int x1,int y1,int x2,int y2)
{
return abs(x1-x2)+abs(y1-y2);
}
void dfs(int cur,int &sig,int &cnt)
{
if(!flag) return;
vis[cur] = ++sig;
stack1[++stack1[0]] = cur;
stack2[++stack2[0]] = cur;
for(int i = head[cur]; i; i = g[i].next)
{
if(!vis[g[i].v]) dfs(g[i].v,sig,cnt);
else
{
if(!scc[g[i].v])
{
while(vis[stack2[stack2[0]]] > vis[g[i].v])
stack2[0] --;
}
}
}
if(stack2[stack2[0]] == cur)
{
stack2[0] --;
++cnt;
do
{
scc[stack1[stack1[0]]] = cnt;
int tmp = stack1[stack1[0]];
if((tmp >= n && scc[tmp - n] == cnt) || (tmp < n && scc[tmp + n] == cnt))
{
flag = false;
return;
}
}
while(stack1[stack1[0] --] != cur);
}
}
void Twosat()
{
int i,sig,cnt;
sig = cnt = 0;
for(i=0; i<n+n&&flag; i++)
{
if(!vis[i]) dfs(i,sig,cnt);
}
}
void solve()
{
int i,j,u,v,t,le=0,ri=4000000,mid;
ans=-1;
while(le<=ri)
{
mid=(le+ri)>>1;
init();
num=0;
for(i=1;i<=m1;i++)
{
u=X[i],v=Y[i];
addedge(u,v+n);
addedge(u+n,v);
addedge(v,u+n);
addedge(v+n,u);
}
for(i=m1+1;i<=m1+m2;i++)
{
u=X[i],v=Y[i];
addedge(u,v);
addedge(v,u);
addedge(u+n,v+n);
addedge(v+n,u+n);
}
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
if(i==j) continue ;
if(dist1[i]+dist1[j]>mid) addedge(i,j+n);
if(dist2[i]+dist2[j]>mid) addedge(i+n,j);
if(dist1[i]+dist2[j]+tot>mid) addedge(i,j);
if(dist2[i]+dist1[j]+tot>mid) addedge(i+n,j+n);
}
}
Twosat();
if(flag)
{
ans=mid;
ri=mid-1;
}
else le=mid+1;
}
}
int main()
{
int i,j,t,x,y,x1,y1,x2,y2;
while(~scanf("%d%d%d",&n,&m1,&m2))
{
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
tot=caldist(x1,y1,x2,y2);
for(i=0; i<n; i++)
{
scanf("%d%d",&x,&y);
dist1[i]=caldist(x,y,x1,y1);
dist2[i]=caldist(x,y,x2,y2);
}
for(i=1;i<=m1+m2;i++)
{
scanf("%d%d",&X[i],&Y[i]);
X[i]--; Y[i]--;
}
solve();
printf("%d\n",ans);
}
return 0;
}
poj 2749 Building roads (二分+拆点+2-sat)的更多相关文章
- HDU 1815, POJ 2749 Building roads(2-sat)
HDU 1815, POJ 2749 Building roads pid=1815" target="_blank" style="">题目链 ...
- POJ 2749 Building roads 2-sat+二分答案
把爱恨和最大距离视为限制条件,可以知道,最大距离和限制条件多少具有单调性 所以可以二分最大距离,加边+check #include<cstdio> #include<algorith ...
- [poj] 2749 building roads
原题 2-SAT+二分答案! 最小的最大值,这肯定是二分答案.而我们要2-SATcheck是否在该情况下有可行解. 对于目前的答案limit,首先把爱和恨连边,然后我们n^2枚举每两个点通过判断距离来 ...
- poj 3625 Building Roads
题目连接 http://poj.org/problem?id=3625 Building Roads Description Farmer John had just acquired several ...
- POJ Building roads [二分答案 2SAT]
睡觉啦 #include <iostream> #include <cstdio> #include <cstring> #include <algorith ...
- POJ 2749 2SAT判定+二分
题意:图上n个点,使每个点都与俩个中转点的其中一个相连(二选一,典型2-sat),并使任意两点最大 距离最小(最大最小,2分答案),有些点相互hata,不能选同一个中转点,有些点相互LOVE,必需选相 ...
- poj 3625 Building Roads(最小生成树,二维坐标,基础)
题目 //最小生成树,只是变成二维的了 #define _CRT_SECURE_NO_WARNINGS #include<stdlib.h> #include<stdio.h> ...
- poj 2749
Building roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6091 Accepted: 2046 De ...
- Building roads
Building roads Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
随机推荐
- Knockoutjs官网翻译系列(一)
最近马上要开始一个新项目的研发,作为第一次mvvm应用的尝试,我决定使用knockoutjs框架.作为学习的开始就从官网的Document翻译开始吧,这样会增加印象并加入自己的思考,说是翻译也并不是纯 ...
- onresize的定义方式
1.直接在html中定义如<body onresize="doResize()"/> 2.直接给onresize赋值给window和body的onresize赋值如wi ...
- 小议window.event || ev
以前做项目时就遇到这个问题,但是太懒没有总结,今天来总结一下 onclick="alert(arguments.callee)"这句随便放在某个元素中,试试不同的浏览器会有弹出什么 ...
- centos7 服务器安装nginx,mysql,php
一.概述 项目的需要,今天在虚拟机上基于Centos安装配置了服务器运行环境,web服务用 nginx,数据库存储在mysql,动态脚本语言是php. 二.步骤 首页保证Centos7已经安装完毕,正 ...
- 转:Centos6.3添加解码器播放MP3和常见视频音频
原文来自于:http://blog.csdn.net/odaynot/article/details/8462273 参考地址: http://wiki.centos.org/AdditionalRe ...
- Color the ball
hdu1556:http://acm.hdu.edu.cn/showproblem.php?pid=1556 题意:中文题. 题解:这一题当然可以直接用线段树来打,但是最近在学树状数组,所以用树状数组 ...
- Oulipo
poj3461:http://poj.org/problem?id=3461 题意:求一个串在另一个串中出现的次数. 题解:直接套用KMP即可,在统计的时候做一下修改.找到之后不是直接返回,而是移动i ...
- 云方案,依托H3C彩虹云存储架构,结合UIA统一认证系统,实现了用户数据的集中存储和管理
客户的声音 资料云项目在迷你云基础上二次开发,通过使用云存储技术及文件秒传技术,对文件进行统一存储与管理,以达到节约文件管理成本.存储成本目的:通过有效的文件版本控制机制,以达到风险管控的目的:通过多 ...
- 文档整体解决方案(readthedocs、github 、sphinx)使用
这里是总结了一下,用的工具或者平台:readthedocs.github .sphinx. 使用这三个工具即可轻松创建高效的文档管理库,可以用来翻译,水平再高一点可以写书. readthedocs 文 ...
- 【转】linux内核调试技巧之一 dump_stack
原文网址:http://blog.csdn.net/dragon101788/article/details/9419175 在内核中代码调用过程难以跟踪,上下文关系复杂,确实让人头痛 调用dump_ ...