poj 2749 Building roads (二分+拆点+2-sat)
Building roads
Description
Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must build N * (N - 1) / 2
roads, which is so costly that cheapskate John will never do that, though that's the best choice for the cows. Clever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair of barns will be connected by the roads. To make the cows don't spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns. That's not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can't connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must decide which transferring point each barn should connect to. We have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other. Note that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1 - y2|. Input
The first line of input consists of 3 integers N, A and B (2 <= N <= 500, 0 <= A <= 1000, 0 <= B <= 1000), which are the number of barns, the number of pairs of barns in which the cows hate each other and the number of pairs of barns in which the cows are friends
with each other. Next line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively. Each of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one. Each of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other. The same pair of barns never appears more than once. Each of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once. You should note that all the coordinates are in the range [-1000000, 1000000]. Output
You just need output a line containing a single integer, which represents the maximum of the distances between every pair of barns, if John selects the optimal road-building scheme. Note if there is no feasible solution, just output -1.
Sample Input 4 1 1 Sample Output 53246 Source
POJ Monthly--2006.01.22,zhucheng
|
题意:
有 N 个牛栏,如今通过一条通道(s1,s2)把他们连起来,他们之间有一些约束关系,一些牛栏不能连在同一个点,一些牛栏必须连在同一个点,如今问有没有可能把他们都连好,并且满足全部的约束关系,假设能够,输出两个牛栏之间距离最大值的最小情况。
思路:
二分枚举最长距离。用2SAT推断可行与否。最后输出答案,假设没有,那么输出-1
条件1 i,j 相互讨厌, <i,j+n> <i+n,j> <j,i+n> <j+n,i>
条件2 i,j 关系好 <i,j> <j,i> <j+n,i+n> <i+n,j+n>
条件3
1:dis(i,s1) + dis(j,s1)>m <i,j+n> <j,i+n>
2:i j都连s2的时候与上面类似
3:dis(i,s1)+dis(s1,s2)+dis(s2,j)>m <i,j> <j+n,i+n>
4:i连s2 j连s1条件与上面类似
代码:
#include <cstdio>
#include <cstring>
#define INF 0x3f3f3f3f
#define maxn 1005
#define MAXN 4000005
using namespace std; int n,m1,m2,num,flag,ans,tot;
int head[maxn],X[2005],Y[2005],dist1[maxn],dist2[maxn];
int scc[maxn];
int vis[maxn];
int stack1[maxn];
int stack2[maxn];
struct edge
{
int v,next;
} g[MAXN]; void init()
{
memset(head,0,sizeof(head));
memset(vis,0,sizeof(vis));
memset(scc,0,sizeof(scc));
stack1[0] = stack2[0] = num = 0;
flag = 1;
}
void addedge(int u,int v)
{
num++;
g[num].v = v;
g[num].next = head[u];
head[u] = num;
}
int abs(int x)
{
if(x>=0) return x;
return -x;
}
int caldist(int x1,int y1,int x2,int y2)
{
return abs(x1-x2)+abs(y1-y2);
}
void dfs(int cur,int &sig,int &cnt)
{
if(!flag) return;
vis[cur] = ++sig;
stack1[++stack1[0]] = cur;
stack2[++stack2[0]] = cur;
for(int i = head[cur]; i; i = g[i].next)
{
if(!vis[g[i].v]) dfs(g[i].v,sig,cnt);
else
{
if(!scc[g[i].v])
{
while(vis[stack2[stack2[0]]] > vis[g[i].v])
stack2[0] --;
}
}
}
if(stack2[stack2[0]] == cur)
{
stack2[0] --;
++cnt;
do
{
scc[stack1[stack1[0]]] = cnt;
int tmp = stack1[stack1[0]];
if((tmp >= n && scc[tmp - n] == cnt) || (tmp < n && scc[tmp + n] == cnt))
{
flag = false;
return;
}
}
while(stack1[stack1[0] --] != cur);
}
}
void Twosat()
{
int i,sig,cnt;
sig = cnt = 0;
for(i=0; i<n+n&&flag; i++)
{
if(!vis[i]) dfs(i,sig,cnt);
}
}
void solve()
{
int i,j,u,v,t,le=0,ri=4000000,mid;
ans=-1;
while(le<=ri)
{
mid=(le+ri)>>1;
init();
num=0;
for(i=1;i<=m1;i++)
{
u=X[i],v=Y[i];
addedge(u,v+n);
addedge(u+n,v);
addedge(v,u+n);
addedge(v+n,u);
}
for(i=m1+1;i<=m1+m2;i++)
{
u=X[i],v=Y[i];
addedge(u,v);
addedge(v,u);
addedge(u+n,v+n);
addedge(v+n,u+n);
}
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
if(i==j) continue ;
if(dist1[i]+dist1[j]>mid) addedge(i,j+n);
if(dist2[i]+dist2[j]>mid) addedge(i+n,j);
if(dist1[i]+dist2[j]+tot>mid) addedge(i,j);
if(dist2[i]+dist1[j]+tot>mid) addedge(i+n,j+n);
}
}
Twosat();
if(flag)
{
ans=mid;
ri=mid-1;
}
else le=mid+1;
}
}
int main()
{
int i,j,t,x,y,x1,y1,x2,y2;
while(~scanf("%d%d%d",&n,&m1,&m2))
{
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
tot=caldist(x1,y1,x2,y2);
for(i=0; i<n; i++)
{
scanf("%d%d",&x,&y);
dist1[i]=caldist(x,y,x1,y1);
dist2[i]=caldist(x,y,x2,y2);
}
for(i=1;i<=m1+m2;i++)
{
scanf("%d%d",&X[i],&Y[i]);
X[i]--; Y[i]--;
}
solve();
printf("%d\n",ans);
}
return 0;
}
poj 2749 Building roads (二分+拆点+2-sat)的更多相关文章
- HDU 1815, POJ 2749 Building roads(2-sat)
HDU 1815, POJ 2749 Building roads pid=1815" target="_blank" style="">题目链 ...
- POJ 2749 Building roads 2-sat+二分答案
把爱恨和最大距离视为限制条件,可以知道,最大距离和限制条件多少具有单调性 所以可以二分最大距离,加边+check #include<cstdio> #include<algorith ...
- [poj] 2749 building roads
原题 2-SAT+二分答案! 最小的最大值,这肯定是二分答案.而我们要2-SATcheck是否在该情况下有可行解. 对于目前的答案limit,首先把爱和恨连边,然后我们n^2枚举每两个点通过判断距离来 ...
- poj 3625 Building Roads
题目连接 http://poj.org/problem?id=3625 Building Roads Description Farmer John had just acquired several ...
- POJ Building roads [二分答案 2SAT]
睡觉啦 #include <iostream> #include <cstdio> #include <cstring> #include <algorith ...
- POJ 2749 2SAT判定+二分
题意:图上n个点,使每个点都与俩个中转点的其中一个相连(二选一,典型2-sat),并使任意两点最大 距离最小(最大最小,2分答案),有些点相互hata,不能选同一个中转点,有些点相互LOVE,必需选相 ...
- poj 3625 Building Roads(最小生成树,二维坐标,基础)
题目 //最小生成树,只是变成二维的了 #define _CRT_SECURE_NO_WARNINGS #include<stdlib.h> #include<stdio.h> ...
- poj 2749
Building roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6091 Accepted: 2046 De ...
- Building roads
Building roads Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
随机推荐
- 安装php时,make步骤报错make: *** [sapi/fpm/php-fpm] Error 1
安装PHP过程中,make步骤报错:(集中网络上各种解决方法) (1)-liconv -o sapi/fpm/php-fpm /usr/bin/ld: cannot find -liconv coll ...
- libthrift0.9.0解析(五)之TNonblockingServer&THsHaServer
本文是一边看代码一边写的,是真随笔,随看随下笔. 看TNonblockingServer,先看其父类AbstractNonblockingServer.一般来说,父类封装的都是通用的东西,具体的底层实 ...
- XCode的一些调试技巧
XCode 内置GDB,我们可以在命令行中使用 GDB 命令来调试我们的程序.下面将介绍一些常用的命令以及调试技巧. po 命令:为 print object 的缩写,显示对象的文本描述(显示从对象的 ...
- javascript 原生 cookie 处理
来自网络! function getCookie(name) { var start = document.cookie.indexOf(name + "="); var len ...
- 使用gdb调试(转: http://www.cnblogs.com/luchen927/archive/2012/02/07/2339003.html)
一般来说GDB主要调试的是C/C++的程序.要调试C/C++的程序,首先在编译时,我们必须要把调试信息加到可执行文件中.使用编译器(cc/gcc/g++)的 -g 参数可以做到这一点.如: > ...
- java 获取页面中的 a 标签 的 href 实例
Pattern p = Pattern.compile("<a\\s+href\\s*=\\s*(\"|\')?(.*?)[\"|\'|>]", P ...
- 求数列的和 AC 杭电
求数列的和 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Subm ...
- linux c信息验证程序(分享)
程序来源是Hirst First c,程序很简单,但却是很好的说明了一个检测信息是否被串改的原理.下载程序的时候是否都有看到提供md5效验值的呢,原理其实和这个小程序相似:就是对程序的内容进行某种计算 ...
- 导出数据到excel
Protected Sub cmdOrderExport_Click(ByVal sender As Object, ByVal e As EventArgs) Handles cmdOrderExp ...
- windows下bat批处理实现守护进程(有日志)
开发部的一个核心程序总是会自己宕机,然后需要手工去起,而这个服务的安全级别又很高,只有我可以操作,搞得我晚上老没法睡,昨晚实在受不了了,想起以前在hp-ux下写的shell守护进程,这回搞个windo ...