归来吧很好推导。T(n) = a^f(n-1)*b^f(n)%p。
主要难点在于求mod和fibo。引用如下公式
A^B%C = A^(B%phi(C) + phi(C))%C, 满足B>=phi(C)。

 /*  */
#include <iostream>
#include <string>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <vector>
#include <deque>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstring>
#include <climits>
#include <cctype>
#include <cassert>
using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
#define lson l, mid, rt<<1
#define rson mid+1, r, rt<<1|1 const int maxn = ;
__int64 a, b, p, n;
__int64 fibo[maxn];
__int64 phi; typedef struct {
__int64 m[][];
} mat_t; mat_t res; mat_t matMult(mat_t a, mat_t &b) {
mat_t c; memset(c.m, , sizeof(c.m));
rep(i, , ) {
rep(j, , ) {
rep(k, , ) {
c.m[i][j] += a.m[i][k] * b.m[k][j];
if (c.m[i][j] > phi) {
c.m[i][j] = c.m[i][j]%phi+phi;
}
}
}
}
return c;
} __int64 euler(__int64 x) {
__int64 ret = x, i; for (i=; i*i<=x; ++i) {
if (x%i == ) {
ret = ret / i * (i-);
while (x%i == )
x /= i;
}
}
if (x > )
ret = ret / x * (x-);
return ret;
} __int64 myPow(__int64 base, __int64 n) {
__int64 ret = ; while (n) {
if (n & )
ret = ret * base %p;
base = base * base %p;
n >>= ;
}
return ret;
} void matFibo(__int64 n) {
mat_t base; res.m[][] = base.m[][] = ;
res.m[][] = res.m[][] = res.m[][] =\
base.m[][] = base.m[][] = base.m[][] = ; while (n) {
if (n & )
res = matMult(base, res);
base = matMult(base, base);
n >>= ;
}
} void getFibo(__int64 &an, __int64 &bn) {
int i; fibo[] = ;
fibo[] = ;
for (i=; i<=n; ++i) {
fibo[i] = fibo[i-] + fibo[i-];
if (fibo[i] > phi)
break;
}
if (i > n) {
an = fibo[n-];
bn = fibo[n];
return ;
}
matFibo(n-);
an = res.m[][];
bn = res.m[][];
} int main() {
int i, j, k;
int t;
__int64 an, bn, ans; #ifndef ONLINE_JUDGE
freopen("data.in", "r", stdin);
freopen("data.out", "w", stdout);
#endif scanf("%d", &t);
rep(tt, , t+) {
scanf("%I64d %I64d %I64d %I64d", &a, &b, &p, &n);
printf("Case #%d: ", tt);
if (a== || b== || p==) {
printf("0\n");
} else if (n == ) {
printf("%I64d\n", a%p);
} else if (n == ) {
printf("%I64d\n", b%p);
} else {
phi = euler(p);
getFibo(an, bn);
ans = myPow(a, an)*myPow(b, bn)%p;
printf("%I64d\n", ans);
}
} #ifndef ONLINE_JUDGE
printf("time = %d.\n", (int)clock());
#endif return ;
}

【HDOJ】3221 Brute-force Algorithm的更多相关文章

  1. 【HDOJ】3315 My Brute

    几乎与2853相同,MCMF. /* 2853 */ #include <iostream> #include <string> #include <map> #i ...

  2. 【HDOJ】4729 An Easy Problem for Elfness

    其实是求树上的路径间的数据第K大的题目.果断主席树 + LCA.初始流量是这条路径上的最小值.若a<=b,显然直接为s->t建立pipe可以使流量最优:否则,对[0, 10**4]二分得到 ...

  3. 【HDOJ】【3506】Monkey Party

    DP/四边形不等式 裸题环形石子合并…… 拆环为链即可 //HDOJ 3506 #include<cmath> #include<vector> #include<cst ...

  4. 【HDOJ】【3516】Tree Construction

    DP/四边形不等式 这题跟石子合并有点像…… dp[i][j]为将第 i 个点开始的 j 个点合并的最小代价. 易知有 dp[i][j]=min{dp[i][j] , dp[i][k-i+1]+dp[ ...

  5. 【HDOJ】【3480】Division

    DP/四边形不等式 要求将一个可重集S分成M个子集,求子集的极差的平方和最小是多少…… 首先我们先将这N个数排序,容易想到每个自己都对应着这个有序数组中的一段……而不会是互相穿插着= =因为交换一下明 ...

  6. 【HDOJ】【2829】Lawrence

    DP/四边形不等式 做过POJ 1739 邮局那道题后就很容易写出动规方程: dp[i][j]=min{dp[i-1][k]+w[k+1][j]}(表示前 j 个点分成 i 块的最小代价) $w(l, ...

  7. 【HDOJ】【3415】Max Sum of Max-K-sub-sequence

    DP/单调队列优化 呃……环形链求最大k子段和. 首先拆环为链求前缀和…… 然后单调队列吧<_<,裸题没啥好说的…… WA:为毛手写队列就会挂,必须用STL的deque?(写挂自己弱……s ...

  8. 【HDOJ】【3530】Subsequence

    DP/单调队列优化 题解:http://www.cnblogs.com/yymore/archive/2011/06/22/2087553.html 引用: 首先我们要明确几件事情 1.假设我们现在知 ...

  9. 【HDOJ】【3068】最长回文

    Manacher算法 Manacher模板题…… //HDOJ 3068 #include<cstdio> #include<cstring> #include<cstd ...

随机推荐

  1. POJ 1845 Sumdiv(因子分解+快速幂+二分求和)

    题意:给你A,B,让求A^B所有的因子和模上9901 思路:A可以拆成素因子的乘积: A = p1^x1 * p2^x2 *...* pn^xn 那么A^B = p1^(B*x1) * p2^(B*x ...

  2. mybatis缓存清除方法

    String cacheName = IWenshiduDao.class.getName(); Ehcache cache = CacheManager.create().getEhcache(ca ...

  3. 探索开发跨平台移动App,谈Jquery Mobile 和PhoneGap应用

    随着智能手机等设备的大范围普及,各形各色的移动端软件随之既出.各互联网运营商也都在抢占移动软件的占有率.不惜采用财力进行宣传推广.例如,通过手机淘宝客户端购买物品总比pc端要便宜,360手机助手下载对 ...

  4. HTML5的你应该记住的一些知识点

    刚开始学HTML5是从w3school开始的,那只是非常简单的一些了解,后面开始看一些xiongdilian的HTML5+CSS3的视频,照着视频做了一些简单的demo(需要的童鞋可以联系我,当然网上 ...

  5. [Jquery] jQuery.cookie帮助类 (转载)

    /** * Cookie plugin * * Copyright (c) [url=http://sufei.cnblogs.com/]http://sufei.cnblogs.com[/url] ...

  6. Java获取项目路径

    参考博客.自己就不写了.我觉得他写得很详细 http://blog.csdn.net/hpf911/article/details/5852127

  7. c#静态成员和静态类

    说起静态类,你可能会联想到实例类.这两者并不难区分,前者(静态类)只在内存中创建一个,而后者(实例类)则是每次实例化后,就会再内存创建一份.今天来简单聊一下静态类的理解. 代码情景: class Pr ...

  8. Oracle 11g-R2 SQL Developer连接MSSQL2008

    操作系统环境:WINDOWS8.1 工具: Oracle 11g-R2  SQL Developer 网络资源:http://sourceforge.net/project/showfiles.php ...

  9. Oracle 11g 新特性(一)-- 虚拟列

    数据库版本: Oracle Database 11g Enterprise Edition Release 11.2.0.2.0 - 64bit Oracle11g 增加了虚拟列的新特性, 具体说明如 ...

  10. OC基础-day05

    #pragma mark - Day05_01_NSObject类 NSObject类 1). NSObject是Foundation框架中的1个类. 在这个类中有1个类方法,叫做new 这个方法的作 ...