TensorFlow 之 手写数字识别MNIST
MNIST For ML Beginners - https://www.tensorflow.org/get_started/mnist/beginners
Deep MNIST for Experts - https://www.tensorflow.org/get_started/mnist/pros
版本:
TensorFlow 1.2.0 + Flask 0.12 + Gunicorn 19.6
相关文章:
TensorFlow 之 入门体验
TensorFlow 之 手写数字识别MNIST
TensorFlow 之 物体检测
TensorFlow 之 构建人物识别系统
MNIST相当于机器学习界的Hello World。
这里在页面通过 Canvas 画一个数字,然后传给TensorFlow识别,分别给出Softmax回归模型、多层卷积网络的识别结果。
(1)文件结构
│ main.py
│ requirements.txt
│ runtime.txt
├─mnist
│ │ convolutional.py
│ │ model.py
│ │ regression.py
│ │ __init__.py
│ └─data
│ convolutional.ckpt.data-00000-of-00001
│ convolutional.ckpt.index
│ regression.ckpt.data-00000-of-00001
│ regression.ckpt.index
├─src
│ └─js
│ main.js
├─static
│ ├─css
│ │ bootstrap.min.css
│ └─js
│ jquery.min.js
│ main.js
└─templates
index.html
(2)训练数据
下载以下文件放入/tmp/data/,不用解压,训练代码会自动解压。
http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
执行命令训练数据(Softmax回归模型、多层卷积网络)
- # python regression.py
- # python convolutional.py
执行完成后 在 mnist/data/ 里会生成以下几个文件,重新训练前需要把这几个文件先删掉。
convolutional.ckpt.index
regression.ckpt.data-00000-of-00001
regression.ckpt.index
(3)启动Web服务测试
- # cd /usr/local/tensorflow2/tensorflow-models/tf-mnist
- # pip install -r requirements.txt
- # gunicorn main:app --log-file=- --bind=localhost:8000
浏览器中访问:http://localhost:8000 
*** 运行的TensorFlow版本、数据训练的模型、还有这里Canvas的转换都对识别率有一定的影响~!
(4)源代码
Web部分比较简单,页面上放置一个Canvas,鼠标抬起时将Canvas的图像通过Ajax传给后台API,然后显示API结果。
templates/index.html
main.py
- import numpy as np
- import tensorflow as tf
- from flask import Flask, jsonify, render_template, request
- from mnist import model
- x = tf.placeholder("float", [None, 784])
- sess = tf.Session()
- # restore trained data
- with tf.variable_scope("regression"):
- y1, variables = model.regression(x)
- saver = tf.train.Saver(variables)
- saver.restore(sess, "mnist/data/regression.ckpt")
- with tf.variable_scope("convolutional"):
- keep_prob = tf.placeholder("float")
- y2, variables = model.convolutional(x, keep_prob)
- saver = tf.train.Saver(variables)
- saver.restore(sess, "mnist/data/convolutional.ckpt")
- def regression(input):
- return sess.run(y1, feed_dict={x: input}).flatten().tolist()
- def convolutional(input):
- return sess.run(y2, feed_dict={x: input, keep_prob: 1.0}).flatten().tolist()
- # webapp
- app = Flask(__name__)
- @app.route('/api/mnist', methods=['POST'])
- def mnist():
- input = ((255 - np.array(request.json, dtype=np.uint8)) / 255.0).reshape(1, 784)
- output1 = regression(input)
- output2 = convolutional(input)
- print(output1)
- print(output2)
- return jsonify(results=[output1, output2])
- @app.route('/')
- def main():
- return render_template('index.html')
- if __name__ == '__main__':
- app.run()
mnist/model.py
- import tensorflow as tf
- # Softmax Regression Model
- def regression(x):
- W = tf.Variable(tf.zeros([784, 10]), name="W")
- b = tf.Variable(tf.zeros([10]), name="b")
- y = tf.nn.softmax(tf.matmul(x, W) + b)
- return y, [W, b]
- # Multilayer Convolutional Network
- def convolutional(x, keep_prob):
- def conv2d(x, W):
- return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
- def max_pool_2x2(x):
- return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
- def weight_variable(shape):
- initial = tf.truncated_normal(shape, stddev=0.1)
- return tf.Variable(initial)
- def bias_variable(shape):
- initial = tf.constant(0.1, shape=shape)
- return tf.Variable(initial)
- # First Convolutional Layer
- x_image = tf.reshape(x, [-1, 28, 28, 1])
- W_conv1 = weight_variable([5, 5, 1, 32])
- b_conv1 = bias_variable([32])
- h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
- h_pool1 = max_pool_2x2(h_conv1)
- # Second Convolutional Layer
- W_conv2 = weight_variable([5, 5, 32, 64])
- b_conv2 = bias_variable([64])
- h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
- h_pool2 = max_pool_2x2(h_conv2)
- # Densely Connected Layer
- W_fc1 = weight_variable([7 * 7 * 64, 1024])
- b_fc1 = bias_variable([1024])
- h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
- h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
- # Dropout
- h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
- # Readout Layer
- W_fc2 = weight_variable([1024, 10])
- b_fc2 = bias_variable([10])
- y = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
- return y, [W_conv1, b_conv1, W_conv2, b_conv2, W_fc1, b_fc1, W_fc2, b_fc2]
mnist/convolutional.py
- import os
- import model
- import tensorflow as tf
- from tensorflow.examples.tutorials.mnist import input_data
- data = input_data.read_data_sets("/tmp/data/", one_hot=True)
- # model
- with tf.variable_scope("convolutional"):
- x = tf.placeholder(tf.float32, [None, 784])
- keep_prob = tf.placeholder(tf.float32)
- y, variables = model.convolutional(x, keep_prob)
- # train
- y_ = tf.placeholder(tf.float32, [None, 10])
- cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
- train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
- correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
- saver = tf.train.Saver(variables)
- with tf.Session() as sess:
- sess.run(tf.global_variables_initializer())
- for i in range(20000):
- batch = data.train.next_batch(50)
- if i % 100 == 0:
- train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
- print("step %d, training accuracy %g" % (i, train_accuracy))
- sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
- print(sess.run(accuracy, feed_dict={x: data.test.images, y_: data.test.labels, keep_prob: 1.0}))
- path = saver.save(
- sess, os.path.join(os.path.dirname(__file__), 'data', 'convolutional.ckpt'),
- write_meta_graph=False, write_state=False)
- print("Saved:", path)
mnist/regression.py
- import os
- import model
- import tensorflow as tf
- from tensorflow.examples.tutorials.mnist import input_data
- data = input_data.read_data_sets("/tmp/data/", one_hot=True)
- # model
- with tf.variable_scope("regression"):
- x = tf.placeholder(tf.float32, [None, 784])
- y, variables = model.regression(x)
- # train
- y_ = tf.placeholder("float", [None, 10])
- cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
- train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
- correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
- saver = tf.train.Saver(variables)
- with tf.Session() as sess:
- sess.run(tf.global_variables_initializer())
- for _ in range(1000):
- batch_xs, batch_ys = data.train.next_batch(100)
- sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
- print(sess.run(accuracy, feed_dict={x: data.test.images, y_: data.test.labels}))
- path = saver.save(
- sess, os.path.join(os.path.dirname(__file__), 'data', 'regression.ckpt'),
- write_meta_graph=False, write_state=False)
- print("Saved:", path)
参考:
http://memo.sugyan.com/entry/20151124/1448292129
TensorFlow 之 手写数字识别MNIST的更多相关文章
- OpenCV+TensorFlow图片手写数字识别(附源码)
初次接触TensorFlow,而手写数字训练识别是其最基本的入门教程,网上关于训练的教程很多,但是模型的测试大多都是官方提供的一些素材,能不能自己随便写一串数字让机器识别出来呢?纸上得来终觉浅,带着这 ...
- keras框架的MLP手写数字识别MNIST,梳理?
keras框架的MLP手写数字识别MNIST 代码: # coding: utf-8 # In[1]: import numpy as np import pandas as pd from kera ...
- python-积卷神经网络全面理解-tensorflow实现手写数字识别
首先,关于神经网络,其实是一个结合很多知识点的一个算法,关于cnn(积卷神经网络)大家需要了解: 下面给出我之前总结的这两个知识点(基于吴恩达的机器学习) 代价函数: 代价函数 代价函数(Cost F ...
- Tensorflow实战 手写数字识别(Tensorboard可视化)
一.前言 为了更好的理解Neural Network,本文使用Tensorflow实现一个最简单的神经网络,然后使用MNIST数据集进行测试.同时使用Tensorboard对训练过程进行可视化,算是打 ...
- 【转】机器学习教程 十四-利用tensorflow做手写数字识别
模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基 ...
- 100天搞定机器学习|day39 Tensorflow Keras手写数字识别
提示:建议先看day36-38的内容 TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edge ...
- Tensorflow手写数字识别---MNIST
MNIST数据集:包含数字0-9的灰度图, 图片size为28x28.训练样本:55000,测试样本:10000,验证集:5000
- 吴裕雄 python 神经网络——TensorFlow实现AlexNet模型处理手写数字识别MNIST数据集
import tensorflow as tf # 输入数据 from tensorflow.examples.tutorials.mnist import input_data mnist = in ...
- 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集
import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...
随机推荐
- Oracle核心技术之 SQL TRACE
1.SQL TRACE说明: 参数类型 布尔型 缺省值 false 参数类别 动态 取值范围 True|false 2.类型 1)sql trace参数:alter system改变对全局进程影响,如 ...
- GCD之各种派发
dispatch_apply的用法 并行模拟for循环,将指定的代码循环10次,一般会把这些代码附加到一个queue上,然后在 dispatch_apply里并行 dispatch_queue_t q ...
- htop详解
一.Htop的使用简介 大家可能对top监控软件比较熟悉,今天我为大家介绍另外一个监控软件Htop,姑且称之为top的增强版,相比top其有着很多自身的优势.如下: 两者相比起来,top比较繁琐 默认 ...
- JQUERY中各个ajax函数
1.$(selecter).load() --- load() 方法从服务器加载数据,并把返回的数据放入被选元素中 2.$.get(url,callback()) 3.$.post(url,d ...
- CentOS 7显卡驱动问题
CentOS 7 KDE桌面安装后有时会出现nouveau 驱动问题,导致系统不定时死机或者重启,那么这时只能禁用nouveau 1. 在配置文件中禁用nouveauvi /etc/modprobe. ...
- 【Fiddler】杂乱基础学习
1.过滤fiddler筛选 打开fiddler>Tools>Fiddler Options>HTTPS>...from remote clients only,勾选这个选项就可 ...
- requests库的post请求
requests库的post请求 #coding:utf-8 import requests import json class Trans(object): def __init__(self, w ...
- 带分数dfs+剪枝优化
#include<iostream>#include<cstdio>#include<cstdlib>#include<ctime>using name ...
- mysql 内置功能 触发器 实验
#准备表命令表 CREATE TABLE cmd ( id INT PRIMARY KEY auto_increment, ), priv ), cmd ), sub_time datetime, # ...
- 001-windows下Elasticsearch安装、Elasticsearch-header安装
一.window安装Elasticsearch安装 elasticsearch的客户端版本必须与服务端版本主版本保持一致. 1.java安装[略] 2.elasticsearch下载 地址:https ...