tensorflow 之tf.nn.depthwise_conv2d and separable_conv2d实现及原理
Depthwise Separable Convolution
1.简介
Depthwise Separable Convolution 是谷歌公司于2017年的CVPR中在论文”Xception: deep learning with depthwise separable convolutions”中提出。
2.结构简介
对输入图片进行分通道卷积后做1*1卷积。结构如下图: 
举例来说,假设输入通道数64,输出通道数64.
传统的Conv2D方法的参数数量为3*3*64*64;而SeparableConv2D的参数数量为3*3*64+1*1*64*64。
3*3*64:对输入的64个通道分别进行卷积
1*1*64*64:对concat后的64个通道进行1*1卷积(pointwise Convolution)
结论:参数数量减少了32192个。
3.适用范围
假设输入图片的空间位置是相较于通道之间关系是高度相关的。
depthwise_conv2d来源于深度可分离卷积
tf.nn.depthwise_conv2d(input,filter,strides,padding,rate=None,name=None,data_format=None)
除去name参数用以指定该操作的name,data_format指定数据格式,与方法有关的一共五个参数:
input:
指需要做卷积的输入图像,要求是一个4维Tensor,具有[batch, height, width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数]filter:
相当于CNN中的卷积核,要求是一个4维Tensor,具有[filter_height, filter_width, in_channels, channel_multiplier]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,输入通道数,输出卷积乘子],同理这里第三维in_channels,就是参数value的第四维strides:
卷积的滑动步长。padding:
string类型的量,只能是”SAME”,”VALID”其中之一,这个值决定了不同边缘填充方式。rate:
这个参数的详细解释见【Tensorflow】tf.nn.atrous_conv2d如何实现空洞卷积?
结果返回一个Tensor,shape为[batch, out_height, out_width, in_channels * channel_multiplier],注意这里输出通道变成了in_channels * channel_multiplier
tf.nn.separable_conv2d
可以看做,深度卷积tf.nn.depthwise_conv2d的扩展
- tf.nn.separable_conv2d(input,depthwise_filter,pointwise_filter,strides,padding,rate=None,name=None,data_format=None)
除去name参数用以指定该操作的name,data_format指定数据格式,与方法有关的一共六个参数:
input:
指需要做卷积的输入图像,要求是一个4维Tensor,具有[batch, height, width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数]depthwise_filter:
用来做depthwise_conv2d的卷积核,也就是说这个函数对输入首先做了一个深度卷积。它的shape规定是[filter_height, filter_width, in_channels, channel_multiplier]pointwise_filter:
用来做pointwise卷积的卷积核,什么是pointwise卷积呢?我们可以把它和GoogLeNet最原始版本Inception结构中后面的1*1卷积核做channel降维来做对比,这里也是用1*1的卷积核,输入通道是depthwise_conv2d的输出通道也就是in_channels * channel_multiplier,输出通道数可以自己定义。因为前面(【Tensorflow】tf.nn.depthwise_conv2d如何实现深度卷积?)已经讲到过了,depthwise_conv2d是对输入图像的每一个channel分别做卷积输出的,那么这个操作我们可以看做是将深度卷积得到的分离的各个channel的信息做一个融合。它的shape规定是[1, 1, channel_multiplier * in_channels, out_channels]strides:
卷积的滑动步长。padding:
string类型的量,只能是”SAME”,”VALID”其中之一,这个值决定了不同边缘填充方式。- rate:
这个参数的详细解释见【Tensorflow】tf.nn.atrous_conv2d如何实现空洞卷积?
输出shape为[batch, out_height, out_width, out_channels]的Tensor
tensorflow 之tf.nn.depthwise_conv2d and separable_conv2d实现及原理的更多相关文章
- 【Tensorflow】tf.nn.depthwise_conv2d如何实现深度卷积?
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/mao_xiao_feng/article/ ...
- 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法
在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化 ...
- 【TensorFlow】tf.nn.max_pool实现池化操作
max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似 有些地方可以从卷积去参考[TensorFlow]tf.nn.conv2d是怎样实现卷积的? tf.nn.max_pool(va ...
- 【Tensorflow】tf.nn.atrous_conv2d如何实现空洞卷积?膨胀卷积
介绍关于空洞卷积的理论可以查看以下链接,这里我们不详细讲理论: 1.Long J, Shelhamer E, Darrell T, et al. Fully convolutional network ...
- tf.nn.depthwise_conv2d 卷积
tf.nn.depthwise_conv2d( input, filter, strides, padding, rate=None, name=None, data_format=None ) 参数 ...
- TensorFlow学习---tf.nn.dropout防止过拟合
一. Dropout原理简述: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层. Dropout就是在不同的训练过程中随机扔掉一部分神经元.也 ...
- TensorFlow:tf.nn.max_pool实现池化操作
tf.nn.max_pool(value, ksize, strides, padding, name=None) 参数是四个,和卷积很类似: 第一个参数value:需要池化的输入,一般池化层接在卷积 ...
- 【TensorFlow】tf.nn.embedding_lookup函数的用法
tf.nn.embedding_lookup函数的用法主要是选取一个张量里面索引对应的元素.tf.nn.embedding_lookup(tensor, id):tensor就是输入张量,id就是张量 ...
- TensorFlow之tf.nn.dropout():防止模型训练过程中的过拟合问题
一:适用范围: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层 二:原理: dropout就是在不同的训练过程中随机扔掉一部分神经元.也就是让 ...
随机推荐
- Qt Quick自定义样式一套
弄了几个月的Qt,基本上以写上位机程序和工厂用的一些工具为主.老大的要求是快速.稳定.不出问题,不过他嫌.net要安装.还有升级(刚开始的时候由于这个出了些小问题),MFC开发东西又实在费劲,就让我找 ...
- 51nod 1584加权约数和
学到了好多东西啊这题... https://blog.csdn.net/sdfzyhx/article/details/72968468 #include<bits/stdc++.h> u ...
- UVALive 6908 Electric Bike dp
Electric Bike 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8 ...
- 一次MySQL异常排查:Query execution was interrupted
异常日志: 查询被中断了,先是在Google上查,又是再百度上查,基本上都是说程序超时设置setQueryTimeout的问题,就是说查询时间超过了设置的最大查询时间,导致查询被中断.我也没办法断定是 ...
- mysql_提示 Lock wait timeout exceeded解决办法
我的mysql报这个错 err=1205 - Lock wait timeout exceeded; try restarting transaction 利用 SHOW PROCESSLIST来查看 ...
- POP3_使用SSL链接邮箱并获取邮件
Gmail目前已经启用了POP3和SMTP服务,与其他邮箱不同的是Gmail提供的POP3和SMTP是使用安全套接字层SSL的,因此常规的JavaMail程序是无法收发邮件的,下面是使用JavaMai ...
- [原创]WebScarab工具介绍
[原创]WebScarab工具介绍 一 WebScarab介绍 WebScarab是一个用来分析使用HTTP和HTTPS协议的应用程序框架.其原理很简单,WebScarab可以记录它检测到的会话内容( ...
- [坑] treap
先来挖个坑,以后有时间了来补上. treap: 学习资料: fhq式treap http://hi.baidu.com/wdxertqdtscnwze/item/7b6a9419be7c68cd ...
- jQuery $('div>ul') $('div ul'
$('div>ul')是<div>的直接后代里找<ul>: 而$('div ul')是在<div>的所有后代里找<ul>.
- WebService使用实例
近期刚刚開始学习使用WebService的方法进行server端数据交互,发现网上的资料不是非常全, 眼下就结合收集到的一些资料做了一个小样例和大家分享一下~ 我们在PC机器javaclient中.须 ...