题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1049

题意:给出一个数列A,要求:(1)修改最少的数字使得数列严格递增;(2)在(1)的基础上使得修改的绝对值之和最小。

思路:对于第一问看起来像是求最长上升子 列,其实不是。我们想,若对于i<j,j能由i转移过来,那么需满足A[j]-A[i]>=j-i才行,这样我们发现只要A[j]-j>=A[i]-i即可。因此令A[i]=A[i]-i,这样求LIS即可。对于第二问,若i<j且j由i转移过来,那么[i+1,j-1]之间 的数字或者大于A[j]或者小于A[i],最后这段区间的数字必然是前面一段修改为A[i]后面一段修改为A[j]。因此,记录每个位置j由哪些前面的位置转移过来,直接暴力枚举前面的位置i即可。然后对于[i+1,j-1],暴力枚举中间的分界点。

int a[N],b[N],c[N],n,f[N];
vector<int> V[N];
int S[N],M; int find(int x)
{
int low=1,high=M,mid;
while(low<=high)
{
mid=(low+high)>>1;
if(b[mid]==x) return mid;
if(b[mid]<x) low=mid+1;
else high=mid-1;
}
} void add(int x,int y)
{
while(x<=n) upMax(S[x],y),x+=x&-x;
} int get(int x)
{
int ans=0;
while(x) upMax(ans,S[x]),x-=x&-x;
return ans;
} int Ans; void deal1()
{
int i;
a[++n]=INF;
FOR1(i,n) b[i]=a[i];
sort(b+1,b+n+1);
M=unique(b+1,b+n+1)-(b+1);
FOR1(i,n) c[i]=find(a[i]);
Ans=0;
FOR1(i,n)
{
f[i]=get(c[i])+1;
add(c[i],f[i]);
upMax(Ans,f[i]);
}
PR(n-Ans);
} i64 sum1[N],sum2[N],dp[N]; void deal2()
{
int i,j,k,t;
V[0].pb(0);
FOR1(i,n) V[f[i]].pb(i),dp[i]=inf;
a[0]=-INF; dp[0]=0;
FOR1(i,n)
{
FOR0(j,SZ(V[f[i]-1]))
{
k=V[f[i]-1][j];
if(k>i) break;
if(a[k]>a[i]) continue;
for(t=k;t<=i;t++) sum1[t]=abs(a[t]-a[k]),sum2[t]=abs(a[t]-a[i]);
for(t=k+1;t<=i;t++) sum1[t]+=sum1[t-1],sum2[t]+=sum2[t-1];
for(t=k;t<i;t++) upMin(dp[i],dp[k]+sum1[t]+sum2[i]-sum2[t]);
}
}
PR(dp[n]);
} int main()
{
RD(n);
int i;
FOR1(i,n) RD(a[i]),a[i]-=i;
deal1(); deal2();
}

BZOJ 1049 数字序列(LIS)的更多相关文章

  1. BZOJ 1049 数字序列

    Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大. Input 第一行包含一个数 ...

  2. bzoj 1049: 数字序列 dp

    题目大意: 给定一个长度为n的整数序列.在改变的数最小的和改变的幅度最小的前提下把它变成一个单调严格上升的序列.求改变的最小的数和这个幅度. 题解: (貌似以前考试考过这道题) 其实这道题就是两道题拼 ...

  3. BZOJ 1046 上升序列(LIS变形)

    要保证长度为L的序列下标字典序最小,当然要尽量选前面的数. 如何判断前面的数是否满足条件?,只需要知道这个数开头的递增序列的最长长度是多少,如果不小于L,那么必然可以加入这个数.还需判断一下它是否大于 ...

  4. 【BZOJ 1049】 1049: [HAOI2006]数字序列 (LIS+动态规划)

    1049: [HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变 ...

  5. 【BZOJ】【1049】【HAOI2006】数字序列

    DP 第一问比较水……a[i]-=i 以后就变成最长不下降子序列问题了,第二问这个结论好神奇,考试的时候怎么破?大胆猜想,不用证明?TAT 题解:http://pan.baidu.com/share/ ...

  6. bzoj 1049 [HAOI2006]数字序列

    [bzoj1049][HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不 ...

  7. 2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS)

    2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS) https://www.luogu.com.cn/problem/P2501 题意: 现在我们有一个长度为 n 的整 ...

  8. 洛谷 P2501 [HAOI2006]数字序列 解题报告

    P2501 [HAOI2006]数字序列 题目描述 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大. ...

  9. 找出数组中最长的连续数字序列(JavaScript实现)

    原始题目: 给定一个无序的整数序列, 找最长的连续数字序列. 例如: 给定[100, 4, 200, 1, 3, 2], 最长的连续数字序列是[1, 2, 3, 4]. 小菜给出的解法: functi ...

随机推荐

  1. C# 多线程 详解

    [基础篇] 怎样创建一个线程 受托管的线程与Windows线程 前台线程与后台线程 名为BeginXXX和EndXXX的方法是做什么用的 异步和多线程有什么关联 [WinForm多线程编程篇] 多线程 ...

  2. Python爬虫实例(六)多进程下载金庸网小说

    目标任务:使用多进程下载金庸网各个版本(旧版.修订版.新修版)的小说 代码如下: # -*- coding: utf-8 -*- import requests from lxml import et ...

  3. rem布局,flexible.js

    //author:caibaojian //website:http://caibaojian.com //weibo:http:weibo.com/kujian //这段js的最后面有两个参数记得要 ...

  4. pyqt5核心-信号与槽(第二弹)

    果: from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Form(object): def setupUi(self, Form): Form.s ...

  5. MySQL找出锁等待

    1.服务器级别的锁等待 可以通过show processlist看到等待锁的线程id,但是无法知道究竟哪个线程持有锁 可以通过mysqladmin debug 相关等待锁的线程以及谁持有锁可以在错误日 ...

  6. HTML5-CSS3-JavaScript(4)

    CSS3中 变形与动画相关属性 CSS3在原来的基础上新增了变形和动画相关属性,通过这些属性可以实现以前需要大段JavaScript才能实现的功能.CSS3的变形功能可以对HTML组件执行位移.旋转. ...

  7. vue学习之三常用命令

    一.插值 1.1 +号运用 <!DOCTYPE html> <html lang="en"> <head> <meta charset=& ...

  8. java map.entry

    我希望要一个ArrayList<Entry>,类似C++中的pair, 但是Map.Entry是个接口,不能实例化,可以像下面这样写 HashMap<Integer, Integer ...

  9. Appium-Python-Client安装

    官网是这个:https://pypi.org/project/Appium-Python-Client/#files 下载下来后是这样的文件不知道怎么安装: 不用下载,直接这样就可以 了~~ 安装后导 ...

  10. CXF创建webservice客户端和服务端

    转 一.CXF的介绍 Apache CXF是一个开源的WebService框架,CXF大大简化了Webservice的创建,同时它继承了XFire的传统,一样可以和spring天然的进行无缝的集成.C ...