http://acm.hdu.edu.cn/showproblem.php?pid=6069

题意:

思路:

根据唯一分解定理,$n={a_{1}}^{p1}*{a2_{}}^{p2}...*{a_{m}}^{pm}$,那么n的因子数就是

n的k次方也是一样的,也就是p前面乘个k就可以了。

先打个1e6范围的素数表,然后枚举每个素数,在[ l , r ]寻找该素数的倍数,将其分解质因数。

到最后如果一个数没有变成1,那就说明这个数是大于1e6的质数。(它就只有0和1两种选择)

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<sstream>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
typedef pair<int,int> pll;
const int INF = 0x3f3f3f3f;
const int maxn=1e6+;
const int mod=; int n;
int cnt=;
int primes[maxn];
int vis[maxn]; void get_primes()
{
int m=sqrt(maxn+0.5);
for(int i=;i<=m;i++)
{
if(!vis[i])
{
for(int j=i*i;j<=maxn;j+=i)
vis[j]=;
}
}
for(int i=;i<=maxn;i++)
if(!vis[i]) primes[cnt++]=i;
} ll l, r, k;
ll sum[maxn], num[maxn]; int main()
{
//freopen("in.txt","r",stdin);
get_primes();
int T;
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld%lld",&l,&r,&k); ll ans=;
for(ll i=l;i<=r;i++) {sum[i-l]=;num[i-l]=i;} for(int i=; i<cnt && primes[i]*primes[i]<=r; i++)
{
ll tmp=ceil((long double)l/primes[i])*primes[i];
for(ll j=tmp;j<=r;j+=primes[i])
{
if(num[j-l]%primes[i]==)
{
int res=;
while(num[j-l]%primes[i]==)
{
res++;
num[j-l]/=primes[i];
}
sum[j-l]=(sum[j-l]*(((ll)res*k+))%mod)%mod;
}
}
} for(ll i=l;i<=r;i++)
{
if(num[i-l]!=) sum[i-l]=(sum[i-l]*(k+))%mod; //大于1e6的质数
ans=(ans+sum[i-l])%mod;
}
printf("%lld\n",ans);
}
return ;
}

HDU 6069 Counting Divisors(唯一分解定理+因子数)的更多相关文章

  1. hdu 6069 Counting Divisors 筛法

    Counting Divisors Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Oth ...

  2. HDU 6069 Counting Divisors

    Counting Divisors Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Oth ...

  3. hdu 6069 Counting Divisors(求因子的个数)

    Counting Divisors Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Oth ...

  4. hdu 6069 Counting divisors 公式+区间筛

    比赛的时候把公式扣出来了,,但是没有想到用筛法算公因子,,默默学习一下.. 题解:设n=p1^(c1)p2^{c2}...pm^{cm},n=p​1^​c​1*​​​​p​2​^c​2​​​​...p ...

  5. HDU 6069 Counting Divisors —— 2017 Multi-University Training 4

    Counting Divisors Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Oth ...

  6. 2017ACM暑期多校联合训练 - Team 4 1003 HDU 6069 Counting Divisors (区间素数筛选+因子数)

    题目链接 Problem Description In mathematics, the function d(n) denotes the number of divisors of positiv ...

  7. HDU 6069 Counting Divisors (素数+筛法)

    题意:给定 l,r,k,让你求,其中 l <= r <= 1e12, r-l <= 1e6, k <= 1e7. 析:首先这个题肯定不能暴力,但是给定的区间较小,可以考虑筛选, ...

  8. HDU 6069 Counting Divisors(区间素数筛法)

    题意:...就题面一句话 思路:比赛一看公式,就想到要用到约数个数定理 约数个数定理就是: 对于一个大于1正整数n可以分解质因数: 则n的正约数的个数就是 对于n^k其实就是每个因子的个数乘了一个K ...

  9. HDU 6069 Counting Divisors(2017 Multi-University Training Contest - Team 4 )

    Output For each test case, print a single line containing an integer, denoting the answer.   Sample ...

随机推荐

  1. HTTP头部信息解释分析(详细整理)

    这篇文章为大家介绍了HTTP头部信息,中英文对比分析,还是比较全面的,若大家在使用过程中遇到不了解的,可以适当参考下 HTTP 头部解释 1. Accept:告诉WEB服务器自己接受什么介质类型,*/ ...

  2. SVN出现xcrun: error: invalid active developer path(Mac)

    Mac升级了系统,配置PHPStorm的SVN,出现如下错误: 具体提示的内容是:xcrun: error: invalid active developer path (/Library/Devel ...

  3. 使用webpy创建一个简单的restful风格的webservice应用

    下载:wget http://webpy.org/static/web.py-0.38.tar.gz解压并进入web.py-0.38文件夹安装:easy_install web.py 这是一个如何使用 ...

  4. python接口自动化 -参数关联(一)

    原文地址https://www.cnblogs.com/yoyoketang/p/6886610.html 原文地址https://www.cnblogs.com/yoyoketang/ 原文地址ht ...

  5. pycharm跳到指定的行

    ctrl+g  弹出一个框,输入要跳的行数 ctrl+home  光标移到第一行 ctrl+end 光标移到最后一行

  6. springmvc学习笔记一框架的理解

    SpringMVC现在在很多公司都很流行,所以这个框架对我们来说,是很重要的. 首先我们对比mvc来分析springmvc这个框架是怎么设计,以及它的工作的流程. 首先来看mvc: 1.  用户发起r ...

  7. Codeforces Round #246 (Div. 2) D E

    这题说的是给了一个字符串当前缀和后缀相同的时候就计算此时的 整个串种拥有这样的子串友多少个,没想到用KMP解 用0开头的那种类型的 KMP 今天刚好也学了一下,因为KMP的作用是找出最长前缀 KMP ...

  8. NIO_2

    导语 缓冲器的设计的是新IO模型中最基础的一部分.因为新IO模型中要求所有的IO操作都需要进行缓冲.在新的IO模型中,不再向输出流写入数据和从数据流中读取数据了,而是要从缓冲区中读写数据.缓冲区可是是 ...

  9. linux基础命令---whereis

    whereis 查找命令的位置,包括执行文件.源代码.手册文件. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedora. 1.语法       ...

  10. velocity #parse抽象重用部分组件

    在某些时候,处于重用的目的,我们会选择将可以重用的部分内容剥离在单独的模板文件中,比如对于查询页面的表格部分,因为现在很多的条件可能是通过弹出查询框的方式来实现,而作为普通页面的时候,他们会有更多的功 ...