HDU 3081 Marriage Match II (二分图,并查集)
HDU 3081 Marriage Match II (二分图,并查集)
Description
Presumably, you all have known the question of stable marriage match. A girl will choose a boy; it is similar as the game of playing house we used to play when we are kids. What a happy time as so many friends playing together. And it is normal that a fight or a quarrel breaks out, but we will still play together after that, because we are kids.
Now, there are 2n kids, n boys numbered from 1 to n, and n girls numbered from 1 to n. you know, ladies first. So, every girl can choose a boy first, with whom she has not quarreled, to make up a family. Besides, the girl X can also choose boy Z to be her boyfriend when her friend, girl Y has not quarreled with him. Furthermore, the friendship is mutual, which means a and c are friends provided that a and b are friends and b and c are friend.
Once every girl finds their boyfriends they will start a new round of this game—marriage match. At the end of each round, every girl will start to find a new boyfriend, who she has not chosen before. So the game goes on and on.
Now, here is the question for you, how many rounds can these 2n kids totally play this game?
Input
There are several test cases. First is a integer T, means the number of test cases.
Each test case starts with three integer n, m and f in a line (3<=n<=100,0<m<nn,0<=f<n). n means there are 2n children, n girls(number from 1 to n) and n boys(number from 1 to n).
Then m lines follow. Each line contains two numbers a and b, means girl a and boy b had never quarreled with each other.
Then f lines follow. Each line contains two numbers c and d, means girl c and girl d are good friends.
Output
For each case, output a number in one line. The maximal number of Marriage Match the children can play.
Sample Input
1
4 5 2
1 1
2 3
3 2
4 2
4 4
1 4
2 3
Sample Output
2
Http
HDU:https://vjudge.net/problem/HDU-3081
Source
二分图,并查集
题目大意
有2*n个点,现在前n个点与后n个点有若干对应关系,求有多少种二分图完美匹配的方案
解决思路
首先不考虑朋友关系。我们可以每次做二分图匹配时,如果是完美匹配,就删掉那些匹配边,再跑二分图匹配,方案数+1。若不是完美匹配,则说明已经无解,退出即可。
再来考虑朋友关系。因为朋友关系是可以传递的,所以我们可以用并查集来维护再同一个朋友集合中的人。那么只要这一个朋友集合内有一个人可以连到u,则这个集合中的所有人都可以连到u。
最后是图论结构的选择。因为本题数据范围不大,所以可以采用邻接矩阵的方式,同时这也可以很方便地支持删除操作,还不需要判重。
另:这里用匈牙利算法实现二分图匹配,具体可以参考这两篇博客:
http://www.cnblogs.com/SYCstudio/p/7138221.html
http://www.cnblogs.com/SYCstudio/p/7138230.html
另:本题还可以用网络流最大流的方式解决,具体请看这篇文章
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxN=201;
const int maxM=maxN*maxN*2;
const int inf=2147483647;
int n,m;
int Map[maxN][maxN];
int Match[maxN];
int use[maxN];
int Mayuri[maxN];
int Find(int x);//并查集寻找祖先同时路径压缩
bool Hungary(int u);//匈牙利算法求解二分图匹配
int main()
{
int T;
scanf("%d",&T);
while (T--)
{
memset(Map,0,sizeof(Map));//多组数据
int f;
scanf("%d%d%d",&n,&m,&f);
for (int i=1;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
Map[u][v]=1;//先连上边
}
for (int i=1;i<=n;i++)//并查集初始化
Mayuri[i]=i;
for (int i=1;i<=f;i++)
{
int u,v;
scanf("%d%d",&u,&v);//读入朋友关系
int fu=Find(u);//合并并查集
int fv=Find(v);
if (fu!=fv)
Mayuri[fu]=fv;
}
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
if (Find(i)==Find(j))
for (int k=1;k<=n;k++)//如果在同一个集合中,只要有一个连了就都要连边
if (Map[i][k]==1)
Map[j][k]=1;
int Ans=0;//统计方案数
while (1)//多次求解二分图匹配
{
int matchcnt=0;//统计匹配个数
memset(Match,-1,sizeof(Match));//匈牙利算法求解最大流
for (int i=1;i<=n;i++)
{
memset(use,0,sizeof(use));
if (Hungary(i))
matchcnt++;
}
if (matchcnt<n)//当匹配数小于n时,不存在完美匹配,退出
break;
for (int i=1;i<=n;i++)//删去本次匹配中用到的边
Map[Match[i]][i]=0;
Ans++;
}
printf("%d\n",Ans);
}
return 0;
}
int Find(int x)
{
if (Mayuri[x]!=x)
Mayuri[x]=Find(Mayuri[x]);
return Mayuri[x];
}
bool Hungary(int u)
{
for (int i=1;i<=n;i++)
if ((Map[u][i]==1)&&(use[i]==0))
{
use[i]=1;
if ((Match[i]==-1)||(Hungary(Match[i])))
{
Match[i]=u;
return 1;
}
}
return 0;
}
HDU 3081 Marriage Match II (二分图,并查集)的更多相关文章
- HDU 3081 Marriage Match II (二分+并查集+最大流)
题意:N个boy和N个girl,每个女孩可以和与自己交友集合中的男生配对子;如果两个女孩是朋友,则她们可以和对方交友集合中的男生配对子;如果女生a和女生b是朋友,b和c是朋友,则a和c也是朋友.每一轮 ...
- HDU 3081 Marriage Match II (网络流,最大流,二分,并查集)
HDU 3081 Marriage Match II (网络流,最大流,二分,并查集) Description Presumably, you all have known the question ...
- HDU 3081 Marriage Match II(二分法+最大流量)
HDU 3081 Marriage Match II pid=3081" target="_blank" style="">题目链接 题意:n个 ...
- HDU3081:Marriage Match II (Floyd/并查集+二分图匹配/最大流(+二分))
Marriage Match II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- HDU 3081 Marriage Match II 二分 + 网络流
Marriage Match II 题意:有n个男生,n个女生,现在有 f 条男生女生是朋友的关系, 现在有 m 条女生女生是朋友的关系, 朋友的朋友是朋友,现在进行 k 轮游戏,每轮游戏都要男生和女 ...
- Marriage Match II(二分+并查集+最大流,好题)
Marriage Match II http://acm.hdu.edu.cn/showproblem.php?pid=3081 Time Limit: 2000/1000 MS (Java/Othe ...
- HDU 3081 Marriage Match II (二分+网络流+并查集)
注意 这题需要注意的有几点. 首先板子要快,尽量使用带当前弧优化的dinic,这样跑起来不会超时. 使用弧优化的时候,如果源点设置成0,记得将cur数组从0开始更新,因为有的板子并不是. 其次这题是多 ...
- HDU 3081 Marriage Match II 最大流OR二分匹配
Marriage Match IIHDU - 3081 题目大意:每个女孩子可以和没有与她或者是她的朋友有过争吵的男孩子交男朋友,现在玩一个游戏,每一轮每个女孩子都要交一个新的男朋友,问最多可以玩多少 ...
- HDU 3081 Marriage Match II
二分图的最大匹配+并查集 每次匹配完之后,删除当前匹配到的边. #include<cstdio> #include<cstring> #include<cmath> ...
随机推荐
- slurm用户快速入门手册
1. 概述2. 架构3. 命令3.1 sacct3.2 sattach3.4 sbatch3.5 sbcast3.6 scancel3.7 scontrol3.8 sinfo3.9 smap3.10 ...
- 软件项目第一次Sprint总结
成果评分表: 组名 分数 原因 9-652 6 界面和谐生动,可运行,在目前阶段可时间基本操作 hzsy -2 代码下载,但实现安卓和相机调用 JYJe族 -1 实现安卓界面,完成一项功能,做得少 结 ...
- sqoop 使用笔记
好久没有更新自己技术博客,现在开始工作了,把自己遇到的问题写到这里边来 主要把自己的问题写出来,分享给大家 sqoop 导入数据时候 有时候会遇到mysql 中有sql 中的关键字 这时候如果直接导出 ...
- 五子棋游戏SRS
一.功能需求 1.绘制棋子 2.绘制界面 3.绘制棋盘 4.实现通过鼠标下棋并判断棋子是否落在棋盘上 6.判断胜负 二.用例图 玩家用例图: 1.落子:玩家鼠标点击最近的落子点落子.2.电脑先落子:选 ...
- iOS开发设计多个target
创建target有两种方式, 1>.是通过新建target可以通过File-->New-->Target,然后选择其中一个模板来创建,app类型的target进行创建 2>.另 ...
- SpringMvc 文件上传注意事项
前端 1.表单提交方法与格式 <form class="form-horizontal" action="/biz/patent/edit" method ...
- 如何删除GitHub或者GitLab 上的文件夹
如何删除GitHub或者GitLab 上的文件夹 需求分析 假设小明有一天不小心把本地仓库的一个文件夹A推送到了远程GIT服务器(例如:github,gitlab,gitee)上,此时想删除远程仓 ...
- Node url模块
const url = require("url");var u = "https://www.jd.com:443/ad/index?uname=qd";// ...
- Lodop打印语句最基本结构介绍(什么是一个任务)
Lodop中最基本的打印过程至少有初始化语句.添内容语句和打印语句三部分组成,例如: LODOP.PRINT_INIT("打印任务名"); //首先一个初始化语句 LODOP.AD ...
- cordic——sincos
phase format :scaled radians,归化到多少pi roundmode :nearest even 近似值 coarse rotation: selected-pi——pi.no ...