铭文一级:

第10章 Spark Streaming整合Kafka

spark-submit \
--class com.imooc.spark.KafkaReceiverWordCount \
--master local[2] \
--name KafkaReceiverWordCount \
--packages org.apache.spark:spark-streaming-kafka-0-8_2.11:2.2.0 \
/home/hadoop/lib/sparktrain-1.0.jar hadoop000:2181 test kafka_streaming_topic 1

spark-submit \
--class com.imooc.spark.KafkaDirectWordCount \
--master local[2] \
--name KafkaDirectWordCount \
--packages org.apache.spark:spark-streaming-kafka-0-8_2.11:2.2.0 \
/home/hadoop/lib/sparktrain-1.0.jar hadoop000:9092 kafka_streaming_topic

铭文二级:

第10章 Spark Streaming整合Kafka

Receiver方式的联调

hadoop000:2181 test kafka_streaming_topic 1  //可直接到IDEA的edit configuration复制

//test:group名、1:线程数

setMaster("local[2]")    //一定要大于2

mvn、scp、运行后看4040端口Spark Streaming的UI界面

可发现Receiver是一直都在运作的,二Direct方式没有此Jobs

Direct Approach(常用 spark1.3引入)

特点:

1、简化了并行度,不需要多个Input Stream,只需要一个DStream

2、加强了性能,真正做到了0数据丢失,而Receiver方式需要写到WAL才可以(即副本存储),Direct方式没有Receiver

3、只执行一次

缺点:基于ZooKeeper的Kafka监控工具,无法展示出来,所以需要周期性地访问offset才能更新到ZooKeeper去

操作:

1、cp KafkaReceiverWordCount 为KafkaDirectWordCount

将createStream改为createDirectStream

参数只需要传brokers与topics,注意查看源码与泛型看返回类型并构造出来

2、关键代码:

  val topicsSet = topics.split(",").toSet
  val kafkaParams = Map[String,String]("metadata.broker.list"-> brokers)
// TODO... Spark Streaming如何对接Kafka
  val messages = KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder](ssc,kafkaParams,topicsSet)

3、联调方式跟Receiver完全一样

第11章 Spark Streaming整合Flume&Kafka打造通用流处理基础

整合日志输出到Flume、整合Flume到Kafka、整合Kafka到Spark Streaming

将Spark Streaming接受到的数据进行处理

日志产生器开发并结合log4j完成日志的输出=>

项目结构的构建:

在test文件夹建java文件夹(改颜色):

新建类LoggerGenerator

public class LoggerGenerator {
private static Logger logger = Logger.getLogger(LoggerGenerator.class.getName());
public static void main(String[] args) throws Exception{
int index = 0;
while(true) {
Thread.sleep(1000);
logger.info("value : " + index++);
}
}
}

在test文件夹建resources文件夹(改颜色):

新建文件log4j.properties

log4j.rootLogger=INFO,stdout,flume

log4j.appender.stdout = org.apache.log4j.ConsoleAppender
log4j.appender.stdout.target = System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} [%t] [%c] [%p] - %m%n

 含义:

  %m   输出代码中指定的消息
  %p 输出优先级,即DEBUG,INFO,WARN,ERROR,FATAL
  %r 输出自应用启动到输出该log信息耗费的毫秒数
  %c 输出所属的类目,通常就是所在类的全名
  %t 输出产生该日志事件的线程名
  %n 输出一个回车换行符,Windows平台为“\r\n”,Unix平台为“\n”
  %d 输出日志时间点的日期或时间,默认格式为ISO8601,也可以在其后指定格式,比如:%d{yyy MMM dd HH:mm:ss , SSS},
     输出类似:2002年10月18日 22 : 10 : 28 , 921
  %l 输出日志事件的发生位置,包括类目名、发生的线程,以及在代码中的行数。举例:Testlog4.main(TestLog4.java: 10 )

  

【慕课网实战】Spark Streaming实时流处理项目实战笔记十三之铭文升级版的更多相关文章

  1. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十之铭文升级版

    铭文一级: 第八章:Spark Streaming进阶与案例实战 updateStateByKey算子需求:统计到目前为止累积出现的单词的个数(需要保持住以前的状态) java.lang.Illega ...

  2. 【慕课网实战】Spark Streaming实时流处理项目实战笔记七之铭文升级版

    铭文一级: 第五章:实战环境搭建 Spark源码编译命令:./dev/make-distribution.sh \--name 2.6.0-cdh5.7.0 \--tgz \-Pyarn -Phado ...

  3. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十四之铭文升级版

    铭文一级: 第11章 Spark Streaming整合Flume&Kafka打造通用流处理基础 streaming.conf agent1.sources=avro-sourceagent1 ...

  4. 【慕课网实战】Spark Streaming实时流处理项目实战笔记二之铭文升级版

    铭文一级: 第二章:初识实时流处理 需求:统计主站每个(指定)课程访问的客户端.地域信息分布 地域:ip转换 Spark SQL项目实战 客户端:useragent获取 Hadoop基础课程 ==&g ...

  5. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十六之铭文升级版

    铭文一级: linux crontab 网站:http://tool.lu/crontab 每一分钟执行一次的crontab表达式: */1 * * * * crontab -e */1 * * * ...

  6. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十五之铭文升级版

    铭文一级:[木有笔记] 铭文二级: 第12章 Spark Streaming项目实战 行为日志分析: 1.访问量的统计 2.网站黏性 3.推荐 Python实时产生数据 访问URL->IP信息- ...

  7. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十二之铭文升级版

    铭文一级: ======Pull方式整合 Flume Agent的编写: flume_pull_streaming.conf simple-agent.sources = netcat-sources ...

  8. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十一之铭文升级版

    铭文一级: 第8章 Spark Streaming进阶与案例实战 黑名单过滤 访问日志 ==> DStream20180808,zs20180808,ls20180808,ww ==> ( ...

  9. 【慕课网实战】Spark Streaming实时流处理项目实战笔记九之铭文升级版

    铭文一级: 核心概念:StreamingContext def this(sparkContext: SparkContext, batchDuration: Duration) = { this(s ...

  10. 【慕课网实战】Spark Streaming实时流处理项目实战笔记八之铭文升级版

    铭文一级: Spark Streaming is an extension of the core Spark API that enables scalable, high-throughput, ...

随机推荐

  1. 学习excel的使用技巧三快捷键和思路

    快捷键 CRTL+回车 是多行执行 思路 关于公式 在空白出 写= 即开始写公式 excel第一行 就是行标 比如 A1 就是excel 表格中第一个 比如来个乘法 =A1*12+b1*13 求和更简 ...

  2. Xeon Phi 《协处理器高性能编程指南》随书代码整理 part 2

    ▶ 第四章,逐步优化了一个三维卷积计算的过程 ● 基准代码 #include <stdio.h> #include <stdlib.h> #include <string ...

  3. python 列表复制给另一个列表,改值两个列表均会改变(备忘)

    http://blog.csdn.net/lc_lc2000/article/details/53135839 本意是使A = B,B为一个列表,结果在后续对A的操作中,导致B中的值也改变了,才回忆起 ...

  4. python 爬虫启航2.0

    文章解析: 1.正则表达式解析 2.beautifulsoup,BeautifulSoup是一个复杂的树形结构,她的每一个节点都是一个python对象,获取网页的内容就是一个提取对象内容的过程,它的提 ...

  5. Linux命令:logout

    logout [n] 退出当前shell,给父shell返回状态码n. 参考return.

  6. linux下redis4.0.2集群部署(利用原生命令)

    一.部署架构如下 每台服务器准备2个节点,一主一从,主节点为另外两台其中一台的主,从节点为另外两台其中一台的从. 二.准备6个节点配置文件 在172.28.18.75上操作 cd /etc/redis ...

  7. datatables插件提示Cannot reinitialise DataTable的解决办法

    这个错误是由于重新设置数据源,又没有将原来的数据清空导致的. 网上有很多解决方案,试了都不管用. 最后找到一种方法,将原来的table销毁,再初始化. 方法是在datatable初始化的时候加入属性 ...

  8. java引用

    java1.2之后将引用分为强引用(Strong Reference).软引用(Soft Reference).弱引用(Weak Reference).虚引用(Phantom Reference)4种 ...

  9. Django的rest_framework认证组件之全局设置源码解析

    前言: 在我的上一篇博客我介绍了一下单独为某条url设置认证,但是如果我们想对所有的url设置认证,该怎么做呢?我们这篇博客就是给大家介绍一下在Rest_framework中如何实现全局的设置认证组件 ...

  10. 134. Gas Station加油站

    [抄题]: There are N gas stations along a circular route, where the amount of gas at station i is gas[i ...