铭文一级:

第10章 Spark Streaming整合Kafka

spark-submit \
--class com.imooc.spark.KafkaReceiverWordCount \
--master local[2] \
--name KafkaReceiverWordCount \
--packages org.apache.spark:spark-streaming-kafka-0-8_2.11:2.2.0 \
/home/hadoop/lib/sparktrain-1.0.jar hadoop000:2181 test kafka_streaming_topic 1

spark-submit \
--class com.imooc.spark.KafkaDirectWordCount \
--master local[2] \
--name KafkaDirectWordCount \
--packages org.apache.spark:spark-streaming-kafka-0-8_2.11:2.2.0 \
/home/hadoop/lib/sparktrain-1.0.jar hadoop000:9092 kafka_streaming_topic

铭文二级:

第10章 Spark Streaming整合Kafka

Receiver方式的联调

hadoop000:2181 test kafka_streaming_topic 1  //可直接到IDEA的edit configuration复制

//test:group名、1:线程数

setMaster("local[2]")    //一定要大于2

mvn、scp、运行后看4040端口Spark Streaming的UI界面

可发现Receiver是一直都在运作的,二Direct方式没有此Jobs

Direct Approach(常用 spark1.3引入)

特点:

1、简化了并行度,不需要多个Input Stream,只需要一个DStream

2、加强了性能,真正做到了0数据丢失,而Receiver方式需要写到WAL才可以(即副本存储),Direct方式没有Receiver

3、只执行一次

缺点:基于ZooKeeper的Kafka监控工具,无法展示出来,所以需要周期性地访问offset才能更新到ZooKeeper去

操作:

1、cp KafkaReceiverWordCount 为KafkaDirectWordCount

将createStream改为createDirectStream

参数只需要传brokers与topics,注意查看源码与泛型看返回类型并构造出来

2、关键代码:

  val topicsSet = topics.split(",").toSet
  val kafkaParams = Map[String,String]("metadata.broker.list"-> brokers)
// TODO... Spark Streaming如何对接Kafka
  val messages = KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder](ssc,kafkaParams,topicsSet)

3、联调方式跟Receiver完全一样

第11章 Spark Streaming整合Flume&Kafka打造通用流处理基础

整合日志输出到Flume、整合Flume到Kafka、整合Kafka到Spark Streaming

将Spark Streaming接受到的数据进行处理

日志产生器开发并结合log4j完成日志的输出=>

项目结构的构建:

在test文件夹建java文件夹(改颜色):

新建类LoggerGenerator

public class LoggerGenerator {
private static Logger logger = Logger.getLogger(LoggerGenerator.class.getName());
public static void main(String[] args) throws Exception{
int index = 0;
while(true) {
Thread.sleep(1000);
logger.info("value : " + index++);
}
}
}

在test文件夹建resources文件夹(改颜色):

新建文件log4j.properties

log4j.rootLogger=INFO,stdout,flume

log4j.appender.stdout = org.apache.log4j.ConsoleAppender
log4j.appender.stdout.target = System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} [%t] [%c] [%p] - %m%n

 含义:

  %m   输出代码中指定的消息
  %p 输出优先级,即DEBUG,INFO,WARN,ERROR,FATAL
  %r 输出自应用启动到输出该log信息耗费的毫秒数
  %c 输出所属的类目,通常就是所在类的全名
  %t 输出产生该日志事件的线程名
  %n 输出一个回车换行符,Windows平台为“\r\n”,Unix平台为“\n”
  %d 输出日志时间点的日期或时间,默认格式为ISO8601,也可以在其后指定格式,比如:%d{yyy MMM dd HH:mm:ss , SSS},
     输出类似:2002年10月18日 22 : 10 : 28 , 921
  %l 输出日志事件的发生位置,包括类目名、发生的线程,以及在代码中的行数。举例:Testlog4.main(TestLog4.java: 10 )

  

【慕课网实战】Spark Streaming实时流处理项目实战笔记十三之铭文升级版的更多相关文章

  1. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十之铭文升级版

    铭文一级: 第八章:Spark Streaming进阶与案例实战 updateStateByKey算子需求:统计到目前为止累积出现的单词的个数(需要保持住以前的状态) java.lang.Illega ...

  2. 【慕课网实战】Spark Streaming实时流处理项目实战笔记七之铭文升级版

    铭文一级: 第五章:实战环境搭建 Spark源码编译命令:./dev/make-distribution.sh \--name 2.6.0-cdh5.7.0 \--tgz \-Pyarn -Phado ...

  3. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十四之铭文升级版

    铭文一级: 第11章 Spark Streaming整合Flume&Kafka打造通用流处理基础 streaming.conf agent1.sources=avro-sourceagent1 ...

  4. 【慕课网实战】Spark Streaming实时流处理项目实战笔记二之铭文升级版

    铭文一级: 第二章:初识实时流处理 需求:统计主站每个(指定)课程访问的客户端.地域信息分布 地域:ip转换 Spark SQL项目实战 客户端:useragent获取 Hadoop基础课程 ==&g ...

  5. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十六之铭文升级版

    铭文一级: linux crontab 网站:http://tool.lu/crontab 每一分钟执行一次的crontab表达式: */1 * * * * crontab -e */1 * * * ...

  6. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十五之铭文升级版

    铭文一级:[木有笔记] 铭文二级: 第12章 Spark Streaming项目实战 行为日志分析: 1.访问量的统计 2.网站黏性 3.推荐 Python实时产生数据 访问URL->IP信息- ...

  7. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十二之铭文升级版

    铭文一级: ======Pull方式整合 Flume Agent的编写: flume_pull_streaming.conf simple-agent.sources = netcat-sources ...

  8. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十一之铭文升级版

    铭文一级: 第8章 Spark Streaming进阶与案例实战 黑名单过滤 访问日志 ==> DStream20180808,zs20180808,ls20180808,ww ==> ( ...

  9. 【慕课网实战】Spark Streaming实时流处理项目实战笔记九之铭文升级版

    铭文一级: 核心概念:StreamingContext def this(sparkContext: SparkContext, batchDuration: Duration) = { this(s ...

  10. 【慕课网实战】Spark Streaming实时流处理项目实战笔记八之铭文升级版

    铭文一级: Spark Streaming is an extension of the core Spark API that enables scalable, high-throughput, ...

随机推荐

  1. (转)SQLServer查询数据库各种历史记录

    原文地址https://www.cnblogs.com/seusoftware/p/4826958.html 在SQL Server数据库中,从登陆开始,然后做了什么操作,以及数据库里发生了什么,大多 ...

  2. node-gyp和node-pre-gyp笔记

    node-gyp大家都不陌生,先不做赘述. node-pre-gyp,install命令可以将存在网络上的作者根据不同平台预编译好的二进制文件下载下来 因为项目需要,博主需要本地编译,而不是去网上下载 ...

  3. 装饰器 -- 函数装饰器(tornado异常响应装饰器)

    # 值可变,每次使用需要重新赋值 ERR_RESP_TEMPLATE = {"state": "FAILED", "error": None ...

  4. org.apache.ibatis.builder.IncompleteElementException: Could not find result map java.util.HashMap

    这样的配置有问题吗? <select id="getFreightCollectManagementList" resultMap="java.util.HashM ...

  5. JS StartMove源码-简单运动框架

    这几天学习js运动应用课程时,开始接触一个小例子:“仿Flash的图片轮换播放器”,其中使用的StartMove简单运动框架我觉得挺好用的.这个源码也简单,理解其原理,自己敲即便也就熟悉了. 用的时候 ...

  6. vs2010提取资源

    setlocal enabledelayedexpansion rem cd C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\Bin set R ...

  7. 数据库中多对多关系的处理 User---Role

    --一个用户可以担任多个角色,如user1既是调度员又是分拣员--一个角色可以被多个用户担任,如user1是调度员,user2也是调度员--用户和角色之间的对应关系为多对多,所以会产生中间表 t_us ...

  8. tensorflow报错error,tf.concat Expected int32, got list containing Tensors of type '_Message' instead

    参考:https://stackoverflow.com/questions/41813665/tensorflow-slim-typeerror-expected-int32-got-list-co ...

  9. git克隆远程仓库的时候断电了,使用git-fetch断点续传

    今天下载tensorflow serving 模型,但是因为主机电源线太长了,不知是我自己搞的还是同事,断电了都, 网速捉急,下载了挺长时间的,一看,git clone 到中途竟然断电,不过查看,还好 ...

  10. Python学习—基础篇之文件操作

    文件操作 文件操作也是编程中需要熟练掌握的技能,尤其是在后台接口编写和数据分析过程中,对各种类型的文件进行操作,获取文件信息或者对信息进行存储是十分重要的.本篇博客中将主要对常见的文本格式文件和Exc ...