链接: http://acm.hdu.edu.cn/showproblem.php?pid=3949

题意:

给出n个数,从中任意取几个数字异或,求第k小的异或和

思路:

线性基求第k小异或和,因为题目中可以出现异或和为0的情况,但线性基里是不会出现异或和为0的情况,所以我们需要多处理下,将数字全插入到线性基中,如果无法插入也就代表会出现异或和为0的情况,那么求第k小就应该变成求线性基中第k-1小。

实现代码:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int M = 1e6+;
struct Linear_Basis{
ll b[],nb[],tot;
bool flag = ;
void init(){
flag = ; tot = ;
memset(b,-,sizeof(b));
memset(nb,,sizeof(nb));
} void Insert(ll x){
for(int i = ;i >= ;i --){
if(x&(1LL<<i)){
if(b[i] == -){
b[i] = x;
return ;
}
x ^= b[i];
}
}
flag = ;
return ;
} ll Max(ll x){
ll ret = x;
for(int i = ;i >= ;i --)
ret = max(ret,ret^b[i]);
return ret;
} ll Min(ll x){
ll ret = x;
for(int i = ;i <= ;i ++)
if(b[i]) ret ^= b[i];
return ret;
} void rebuild(){
for(int i = ;i >= ;i --){
if(b[i] == -) continue;
for(int j = i-;j >= ;j --){
if(b[j] == -) continue;
if(b[i]&(1LL<<j)) b[i]^=b[j];
}
}
for(int i = ;i <= ;i ++)
if(b[i]!=-) nb[tot++] = b[i];
} ll K_Min(ll k){
ll res = ;
if(flag == ) k --;
if(k == ) return ;
if(k >= (1LL<<tot))
return -;
for(int i = ;i >= ;i --)
if(k&(1LL<<i))
res ^= nb[i];
return res;
}
}LB; int main()
{
int cas = ,t,n,m;
cin>>t;
while(t--){
LB.init();
cin>>n;
ll x;
for(int i = ;i <= n;i ++){
cin>>x;
LB.Insert(x);
}
LB.rebuild();
printf("Case #%d:\n",cas++);
scanf("%d",&m);
while(m--){
ll k;
scanf("%lld",&k);
printf("%lld\n",LB.K_Min(k));
}
}
return ;
}

hdu 3949 XOR (线性基)的更多相关文章

  1. HDU 3949 XOR [线性基|高斯消元]

    目录 题目链接 题解 代码 题目链接 HDU 3949 XOR 题解 hdu3949XOR 搞死消元找到一组线性无关组 消出对角矩阵后 对于k二进制拆分 对于每列只有有一个1的,显然可以用k的二进制数 ...

  2. HDU 3949 XOR 线性基

    http://acm.hdu.edu.cn/showproblem.php?pid=3949 求异或第k小,结论是第k小就是 k二进制的第i位为1就把i位的线性基异或上去. 但是这道题和上一道线性基不 ...

  3. hdu 3949 XOR 线性基 第k小异或和

    题目链接 题意 给定\(n\)个数,对其每一个子集计算异或和,求第\(k\)小的异或和. 思路 先求得线性基. 同上题,转化为求其线性基的子集的第k小异或和. 结论 记\(n\)个数的线性基为向量组\ ...

  4. HDU 3949 XOR ——线形基 高斯消元

    [题目分析] 异或空间的K小值. 高斯消元和动态维护线形基两种方法都试了试. 动态维护更好些,也更快(QAQ,我要高斯消元有何用) 高斯消元可以用来开拓视野. 注意0和-1的情况 [代码] 高斯消元 ...

  5. HDU 3949 XOR(高斯消元搞基)

    HDU 3949 XOR pid=3949" target="_blank" style="">题目链接 题意:给定一些数字,问任取几个异或值第 ...

  6. HDU 3949 XOR [高斯消元XOR 线性基]

    3949冰上走 题意: 给你 N个数,从中取出若干个进行异或运算 , 求最后所有可以得到的异或结果中的第k小值 N个数高斯消元求出线性基后,设秩为$r$,那么总共可以组成$2^r$中数字(本题不能不选 ...

  7. HDU 3949 XOR (线性基第k小)题解

    题意: 给出\(n\)个数,求出子集异或第\(k\)小的值,不存在输出-1. 思路: 先用线性基存所有的子集,然后对线性基每一位进行消元,保证只有\(d[i]\)的\(i\)位存在1,那么这样变成了一 ...

  8. ACM学习历程—HDU 3949 XOR(xor高斯消元)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 题目大意是给n个数,然后随便取几个数求xor和,求第k小的.(重复不计算) 首先想把所有xor的 ...

  9. Xor && 线性基练习

    #include <cstdio> #include <cstring> ; ; int cnt,Ans,b,x,n; inline int Max(int x,int y) ...

随机推荐

  1. SPOJ GSS(Can you answer the Queries)系列 7/8

    GSS1 线段树最大子段和裸题,不带修改,注意pushup. 然而并不会猫树之类的东西 #include<bits/stdc++.h> #define MAXN 50001 using n ...

  2. Luogu P4462 [CQOI2018]异或序列

    一道稍微要点脑子的莫队题,原来省选也会搬CF原题 首先利用\(xor\)的性质,我们可以搞一个异或前缀和的东西 每一次插入一个数,考虑它和之前已经加入的数能产生多少贡献 记一下之前的异或总值,然后还是 ...

  3. Centos7 64位 -- glibc-2.29 编译升级方法(已成功)

    某软件出现漏洞,需要升级解决(忘了哪个)结果提示glibc版本过低. 懵懂无知的我以为glibc想其他软件一样编译升级一下就好.. 结果? 重装系统! 说真的,如非必要(或学习),请勿升级 glibc ...

  4. 如何在Windows资源管理器右键菜单中 添加CMD

    我们在用windows时经常需要在某个目录下执行执行一些dos命令,通常我们会在开始菜单的运行下键入:cmd,开启dos命令窗口,然后在cd到目标操作目录,每次这样操作比较麻烦.下面介绍一种直接在资源 ...

  5. TRIO-basic变量的状态位

    TRIO运动控制器在应用中,我们一般会用一个VR寄存器的状态位来控制一些报警信号,这样有利于代码的优化,同时和触摸屏设置报警信息大大的方便和节约时间. 首先测试了一下一个寄存器可以设置多少个状态位. ...

  6. [T-ARA][남주긴 아까워][给别人可惜了]

    歌词来源:http://music.163.com/#/song?id=29343992 作曲 : 二段横踢/Radio Galaxi [作曲 : 二段横踢/Radio Galaxi] 作词 : 二段 ...

  7. Centos下安装破解confluence6.3的操作记录

    confluence是一个专业的企业知识管理与协同软件,可以用于构建企业wiki.通过它可以实现团队成员之间的协作和知识共享.现在大多数公司都会部署一套confluence,用作内部wiki.现在co ...

  8. ubuntu系统升级和其他相关操作记录

    之前在openstack中安装了ubuntu 12.04虚拟机,版本较低,需要升级为高版本.下面分享下升级过程: ubuntu系统升级操作:$ cat /etc/issueUbuntu 12.04.5 ...

  9. 洛谷P1004 方格取数-四维DP

    题目描述 设有 N \times NN×N 的方格图 (N \le 9)(N≤9) ,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 00 .如下图所示(见样例): A 0 0 0 0 0 ...

  10. Eclipse+tomcat+MySQL搭建JavaWeb开发环境

    准备 1.安装JDK并配置环境变量 2.下载Eclipse,Tomcat,MySQL 配置eclipse 解压Eclipse,需要添加Web Tools Platform才能进行web开发 1.启动E ...