若函数$f(x)=ax^2+20x+14(a>0)$对任意实数$t$,在闭区间$[t-1,t+1]$上总存在两实数$x_1,x_2$,使得$|f(x_1)-f(x_2)|\ge8$成立,则实数$a$的最小值为____


解答:记$h(t)=\max\limits_{x_1,x_2}\{|f(x_1)-f(x_2)|\}$,由题意$h(t)_{min}\ge8$
$\because 2a=f(t+1)+f(t-1)-2f(t)\le 2f(x)_{max}-2f(x)_{min}=2h(t),\therefore h(t)_{min}= a\ge8$

注:本题在很多模拟题中出现,但目前市面上的参考答案里笔者没有发现一种方法比我这里展现的在不失严格性的前提下更简洁.

MT【223】二次函数最大最小的更多相关文章

  1. 三分初练QAQ

    求凸函数的极值的一般方法是三分 三分的思想大概是这样的: 例如我们要求下凸函数的极值 在区间[L,R]上, 我们定义m1为区间的第一个三等分点 定义m2为区间的第二个三等分点 设函数值为F(x) 则若 ...

  2. XGBoost原理和公式推导

     本篇文章主要介绍下Xgboost算法的原理和公式推导.关于XGB的一些应用场景在此就不赘述了,感兴趣的同学可以自行google.下面开始: 1.模型构建 构建最优模型的方法一般是最小化训练数据的损失 ...

  3. NDT(Normal Distributions Transform)算法原理与公式推导

    正态分布变换(NDT)算法是一个配准算法,它应用于三维点的统计模型,使用标准最优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快.下面的公式推导 ...

  4. XGBoost、LightGBM、Catboost总结

    sklearn集成方法 bagging 常见变体(按照样本采样方式的不同划分) Pasting:直接从样本集里随机抽取的到训练样本子集 Bagging:自助采样(有放回的抽样)得到训练子集 Rando ...

  5. MT【329】二次函数系数的最大最小

    已知二次函数$f(x)=ax^2+bx+c$有零点,且$a+b+c=1$ 若$t=\min\{a,b,c\}$求$t$的最大值. 分析:由$a,c$的对称性,不妨$c\ge a$即$2a+b\le1$ ...

  6. POJ 1061青蛙的约会。求解(x+mT)%L=(y+nT)%L的最小步数T。

    因为是同余,所以就是(x+mT)%L-(y+nT)%L=0.可以写成(x-y+(m-n)T)%L=0.就是这个数是L的倍数啦.那么我可以这样x-y+(m-n)T + Ls = 0.就可以了,s可正可负 ...

  7. MT【219】构造二次函数

    (2012北大保送)已知$f(x)$是二次函数,且$a,f(a),f(f(a)),f(f(f(a)))$是正项等比数列;求证:$f(a)=a$ 构造二次函数$f(x)=qx$,则$a,f(a),f(f ...

  8. MT【54】一道二次函数问题的几何意义

    [Rather less, but better.]----卡尔·弗里德里希·高斯(1777-1855) (2016诸暨质检18)已知$f(x)=x^2-a|x-1|+b(a>0,b>-1 ...

  9. MT【39】构造二次函数证明

    这种构造二次函数的方法最早接触的应该是在证明柯西不等式时: 再举一例: 最后再举个反向不等式的例子: 评:此类题目的证明是如何想到的呢?他们都有一个明显的特征$AB\ge(\le)C^2$,此时构造二 ...

随机推荐

  1. 常见camera测试卡

    常见camera测试卡     版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/luckywang1103/article/details/87166 ...

  2. odoo学习之弹框显示

    按条件隐藏: <xpath expr="//group[1]" position="attributes"> <attribute name= ...

  3. CF58E Expression 搜索

    题目传送门:http://codeforces.com/problemset/problem/58/E 题意:给出一个形如$x+y=z$(不一定正确)的式子,试输出一个$a+b=c$的式子,满足:$1 ...

  4. [Spark][Python][DataFrame][SQL]Spark对DataFrame直接执行SQL处理的例子

    [Spark][Python][DataFrame][SQL]Spark对DataFrame直接执行SQL处理的例子 $cat people.json {"name":" ...

  5. MySQL数据库服务器(YUM)安装

    1. 概述2. 部署过程2.1 虚拟机console的NFS服务端配置2.2 虚拟机node15的NFS客户端配置2.3 虚拟机安装MySQL环境2.4 配置MySQL3. 错误及解决3.1 启动失败 ...

  6. Munge服务部署和测试

    1. 概述2. 下载3. 安装3.1 源码简要说明3.2 编译安装3.3 配置3.4 创建munge.key3.5 启动方式 1. 概述 munge是认证服务,用于生成和验证证书.应用于大规模的HPC ...

  7. 基于HTML5 Canvas WebGL制作分离摩托车

    工业方面制作图表,制作模型方面运用到 3d 模型是非常多的,在一个大的环境中,构建无数个相同的或者不同的模型,构建起来对于程序员来说也是一件相当头疼的事情,我们利用 HT 帮大家解决了很大的难题,无数 ...

  8. Notes of Daily Scrum Meeting(12.23)

    今天的团队任务总结如下: 团队成员 今日团队工作 陈少杰 调试网络连接,寻找新的连接方法 王迪 建立搜索的UI界面 金鑫 查阅相关资料,熟悉后台的接口 雷元勇 建立搜索的界面 高孟烨 继续美化界面,熟 ...

  9. 20135218 实践四 ELF文件格式分析

    一 :概述 ELF全称Executable and Linkable Format,可执行连接格式,ELF格式的文件用于存储Linux程序.ELF文件(目标文件)格式主要三种: (1)可重定向文件:文 ...

  10. SuperMaze(Hello World 团队)Alpha版使用说明

    一.产品介绍 超级迷宫是一款android的手机游戏,目前我们已经在PC 端成功实现大体功能,虽然虽然迷宫游戏不少但我们的游戏渐渐的会假如自己的特色功能,尽量吸引用户,通过游戏开发智力,通过游戏打发无 ...