[luogu1447][bzoj2005][NOI2010]能量采集
题目大意
求出\(\sum_{i=1}^{n} \sum_{i=1}^{m} gcd(i,j)\times 2 -1\)。
题解
解法还是非常的巧妙的,我们考虑容斥原理。我们定义\(f[i]\)表示\(gcd(x,y)\)的数对的个数,但是我们可以发现这样的状态并不好直接转移。那么我们就从\(f[i]\)的倍数入手(也就是\(gcd(x,y)\)的倍数入手,这样比较好理解),先定义\(g[i]\)为在数对\((x,y)\)中\(gcd(x,y)\)是\(i\)的倍数的个数。这种思想比较像线性筛素数。
对于一开始的\(g[i]\)就是\(\frac{n\times m}{i^2}\)。关于这个玩意的证明我还是不怎么会,但是好像听其他大佬说:你太弱了,这是显而易见的。(emm~~我果然是太弱了)
那么我们就当这个东西是显而易见的好了,如果有证明我会回来补坑的。(应该也有很多小伙伴也不知道这个东西怎么证明)(可能是我太菜了,不要吐槽我QAQ)。
证明(update by 2019/3/3 19.33)
是我脑子出问题了,其实画一个图就出来的事情,还搞得怎么复杂。证明简单,如下:
已知:\(x\in [1,n]\)且\(y\in [1,m]\)。
求证:\(gcd(x,y)\)的倍数(包括\(1\)倍)的个数有\(\frac{n\times m}{gcd(x,y)^2}\)。
证明:我们假设\(g=gcd(x,y)\),那么可以得到最小的数对就是\((1,g)\)和\((g,1)\),那么非常显然数对\((g,g)\)的\(gcd\)也是\(g\)的倍数,那么也可以推出在\([1,n]\)和\([1,m]\)的范围内,在横排上有\(n/g\)和\(m/g\),根据乘法原理,所有的点对的个数就是\(n*m/(g^2)\)。
得到这些倍数之后,因为我们是算倍数,在\(g[i]\)中包含了\(g[i\times 2]+\cdots+g[i\times k] \ (i\times k<=min(n,m))\),那么容斥原理把这些重复的部分减去就可以了,也就是\(f[i]=f[i]-g[i\times2]-g[i\times3]-\cdots-g[i\times k] \ (i\times k<=min(n,m))\)
小小的细节:因为我们是要算出倍数,那么我们倍数必须要先算出来,那么在枚举是我们要从后向前枚举,是不是非常好理解。
ac代码
# include <cstdio>
# include <cstring>
# include <algorithm>
# include <ctype.h>
# include <iostream>
# include <cmath>
# include <map>
# include <vector>
# include <queue>
# define LL long long
# define ms(a,b) memset(a,b,sizeof(a))
# define ri (register int)
# define inf (0x7f7f7f7f)
# define pb push_back
# define fi first
# define se second
# define pii pair<int,int>
# define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
using namespace std;
inline int gi(){
int w=0,x=0;char ch=0;
while(!isdigit(ch)) w|=ch=='-',ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return w?-x:x;
}
# define N 100005
int n,m;
LL ans,f[N];
int main(){
n=gi(),m=gi();
for (int i=n;i>=1;i--){
f[i]=(LL)(n/i)*(m/i);
for (int j=2*i;j<=min(n,m);j+=i) f[i]-=f[j];//容斥原理,减去重复的部分
ans+=(LL)(i*2-1)*f[i];
}
printf("%lld\n",ans);
return 0;
}
[luogu1447][bzoj2005][NOI2010]能量采集的更多相关文章
- BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】
BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...
- bzoj2005: [Noi2010]能量采集
lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...
- [BZOJ2005][Noi2010]能量采集 容斥+数论
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4394 Solved: 2624[Submit][Statu ...
- BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- BZOJ2005: [Noi2010]能量采集(容斥原理 莫比乌斯反演)
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 4727 Solved: 2877[Submit][Status][Discuss] Descript ...
- [bzoj2005][Noi2010][能量采集] (容斥 or 欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...
- BZOJ2005: [Noi2010]能量采集(欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...
- BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛
分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...
- 【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集
Description 求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m.n, m<=1e5. Solution f(n)为gcd正好是n的(x, ...
随机推荐
- 关于小程序登录时获取openId和unionId走过的坑
目前的项目是在做小程序这方面的,接触过的人应该都知道,同一个微信开放平台下的相同主体的App.公众号.小程序的unionid是相同的,这样就可以锁定是不是同一个用户.微信针对不同的用户在不同的应用下都 ...
- 浅谈左偏树在OI中的应用
Preface 可并堆,一个听起来很NB的数据结构,实际上比一般的堆就多了一个合并的操作. 考虑一般的堆合并时,当我们合并时只能暴力把一个堆里的元素一个一个插入另一个堆里,这样复杂度将达到\(\log ...
- Luogu P2657 [SCOI2009]windy数
一道比较基础的数位DP,还是挺套路的. 首先看题,发现这个性质和数的大小无关,因此我们可以直接数位DP,经典起手式: \(f[a,b]=f(b)-f(a-1)\) 然后考虑如何求解\(f(x)\).我 ...
- [Oracle]如何获得出现故障时,客户端的详细连接信息
[Oracle]如何获得出现故障时,客户端的详细连接信息 客户坚持说 只是在 每天早上5点才运行下面的语句: select / * + FULL (TAB001_TT01) * / 'TAB001_T ...
- .Net并行编程(一)-TPL之数据并行
前言 许多个人计算机和工作站都有多个CPU核心,可以同时执行多个线程.利用硬件的特性,使用并行化代码以在多个处理器之间分配工作. 应用场景 文件批量上传 并行上传单个文件.也可以把一个文件拆成几段分开 ...
- .net core实践系列之短信服务-Sikiro.SMS.Api服务的实现
前言 上篇<.net core实践系列之短信服务-架构设计>介绍了我对短信服务的架构设计,同时针对场景解析了我的设计理念.本篇继续讲解Api服务的实现过程. 源码地址:https://gi ...
- 免费的 Vue.js 入门与进阶视频教程
这是我免费发布的高质量超清「Vue.js 入门与进阶视频教程」. 全网最好的.免费的 Vue.js 视频教程,课程基于 Vue.js 2.0,由浅入深,最后结合实际的项目进行了最棒的技术点讲解,此课程 ...
- 【Beta阶段】第六次Scrum Meeting!
每日任务内容: 本次会议为第六次Scrum Meeting会议~ 由于本次会议项目经理召开时间为9:30,在公寓1楼会客室召开,召开时长约30分钟,探讨了本次取得的重大突破后需要继续开展的工作. 队员 ...
- #个人博客作业Week2——关于代码规范的讨论
<1> 这些规范都是官僚制度下产生的浪费大家的编程时间.影响人们开发效率, 浪费时间的东西. 反驳:官僚制度在一定程度下维持了社会的和谐稳定,一个没有法律.没有拥有完善的管理体制.完全崇尚 ...
- 读书笔记(chapter7)
第七章 链接 链接是将各种代码和数据部分收集起来并且组合成为一个单一文件的过程.1.这个文件可被加载到存储器并执行:2.也可以执行于加载时,也就是在程序被加载器加载到存储器并执行:3.甚至可以执行于运 ...