题目大意

求出\(\sum_{i=1}^{n} \sum_{i=1}^{m} gcd(i,j)\times 2 -1\)。

题解

解法还是非常的巧妙的,我们考虑容斥原理。我们定义\(f[i]\)表示\(gcd(x,y)\)的数对的个数,但是我们可以发现这样的状态并不好直接转移。那么我们就从\(f[i]\)的倍数入手(也就是\(gcd(x,y)\)的倍数入手,这样比较好理解),先定义\(g[i]\)为在数对\((x,y)\)中\(gcd(x,y)\)是\(i\)的倍数的个数。这种思想比较像线性筛素数。

对于一开始的\(g[i]\)就是\(\frac{n\times m}{i^2}\)。关于这个玩意的证明我还是不怎么会,但是好像听其他大佬说:你太弱了,这是显而易见的。(emm~~我果然是太弱了)

那么我们就当这个东西是显而易见的好了,如果有证明我会回来补坑的。(应该也有很多小伙伴也不知道这个东西怎么证明)(可能是我太菜了,不要吐槽我QAQ)。


证明(update by 2019/3/3 19.33)

是我脑子出问题了,其实画一个图就出来的事情,还搞得怎么复杂。证明简单,如下:
已知:\(x\in [1,n]\)且\(y\in [1,m]\)。
求证:\(gcd(x,y)\)的倍数(包括\(1\)倍)的个数有\(\frac{n\times m}{gcd(x,y)^2}\)。
证明:我们假设\(g=gcd(x,y)\),那么可以得到最小的数对就是\((1,g)\)和\((g,1)\),那么非常显然数对\((g,g)\)的\(gcd\)也是\(g\)的倍数,那么也可以推出在\([1,n]\)和\([1,m]\)的范围内,在横排上有\(n/g\)和\(m/g\),根据乘法原理,所有的点对的个数就是\(n*m/(g^2)\)。


得到这些倍数之后,因为我们是算倍数,在\(g[i]\)中包含了\(g[i\times 2]+\cdots+g[i\times k] \ (i\times k<=min(n,m))\),那么容斥原理把这些重复的部分减去就可以了,也就是\(f[i]=f[i]-g[i\times2]-g[i\times3]-\cdots-g[i\times k] \ (i\times k<=min(n,m))\)

小小的细节:因为我们是要算出倍数,那么我们倍数必须要先算出来,那么在枚举是我们要从后向前枚举,是不是非常好理解。

ac代码

# include <cstdio>
# include <cstring>
# include <algorithm>
# include <ctype.h>
# include <iostream>
# include <cmath>
# include <map>
# include <vector>
# include <queue>
# define LL long long
# define ms(a,b) memset(a,b,sizeof(a))
# define ri (register int)
# define inf (0x7f7f7f7f)
# define pb push_back
# define fi first
# define se second
# define pii pair<int,int>
# define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
using namespace std;
inline int gi(){
    int w=0,x=0;char ch=0;
    while(!isdigit(ch)) w|=ch=='-',ch=getchar();
    while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
    return w?-x:x;
}
# define N 100005
int n,m;
LL ans,f[N];
int main(){
    n=gi(),m=gi();
    for (int i=n;i>=1;i--){
        f[i]=(LL)(n/i)*(m/i);
        for (int j=2*i;j<=min(n,m);j+=i) f[i]-=f[j];//容斥原理,减去重复的部分
        ans+=(LL)(i*2-1)*f[i];
    }
    printf("%lld\n",ans);
    return 0;
}

[luogu1447][bzoj2005][NOI2010]能量采集的更多相关文章

  1. BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】

    BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...

  2. bzoj2005: [Noi2010]能量采集

    lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...

  3. [BZOJ2005][Noi2010]能量采集 容斥+数论

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4394  Solved: 2624[Submit][Statu ...

  4. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  5. BZOJ2005: [Noi2010]能量采集(容斥原理 莫比乌斯反演)

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 4727  Solved: 2877[Submit][Status][Discuss] Descript ...

  6. [bzoj2005][Noi2010][能量采集] (容斥 or 欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

  7. BZOJ2005: [Noi2010]能量采集(欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

  8. BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛

    分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...

  9. 【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集

    Description 求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m.n, m<=1e5. Solution f(n)为gcd正好是n的(x, ...

随机推荐

  1. Ionic app升级插件开发

    终于走到了写插件的这个地方了,插件的过程: 1.安装plugman插件,管理我们的程序 npm install -g plugman 2.创建插件项目appUpgrade,cd 到你的目标目录下,执行 ...

  2. C# 套接字编程:Scoket,我用Scoket做的C# Windows应用程序如下:

    首先请允许我做一个截图: 以上,是我服务端设计 我们知道:服务器端口数最大可以有65535个,但是实际上常用的端口才几十个,由此可以看出未定义的端口相当多.因此,我们可以通过程序随机获取一个当前可用的 ...

  3. Intellij IDEA的下载和使用(针对学生的免费使用计划)

    一.下载和使用授权(针对学生) 1.下载 可以在Intellij IDEA官网上下载需要的版本.下载地址:https://www.jetbrains.com/idea/ 2.学生免费试用 首先,你得现 ...

  4. SpringBoot日记——ElasticSearch全文检索

    看到标题的那一串英文,对于新手来说一定比较陌生,而说起检索,应该都知道吧. 这个ElasticSearch目前我们的首选,他主要有可以提供快速的存储.搜索.分析海量数据的作用.他是一个分布式搜索服务, ...

  5. Ionic 3 延迟加载(Lazy Load)实战(一)

    本文分享并演示了在 Ionic 3 框架中如何进行模块的延迟加载(Lazy Load)开发. 在我的实战课程「快速上手Ionic3 多平台开发企业级问答社区」中,因为开发的仿知乎 App 模块间的加载 ...

  6. django通用权限控制框架

    在web项目中根据不同的用户肯定会限制其不同的权限,利用以下模块可以满足日常几乎所有的权限控制 permission_hook.py  # 自定义权限控制,必须返回True/false  ,True表 ...

  7. 理解Liang-Barsky裁剪算法的算法原理

    0.补充知识向量点积:结果等于0, 两向量垂直; 结果大于0, 两向量夹角小于90度; 结果小于0, 两向量夹角大于90度.直线的参数方程:(x1, y1)和(x2, y2)两点确定的直线, 其参数方 ...

  8. Supervisor (进程管理利器) 使用说明 - 运维笔记

    一.Supervisor简单介绍supervisor是一个 Client/Server模式的系统,允许用户在类unix操作系统上监视和控制多个进程,或者可以说是多个程序.supervisor与laun ...

  9. CentOS 网卡自动启动、配置等ifcfg-eth0教程

    装完centos后发现网卡没有自动启动, vi /etc/sysconfig/network-scripts/ifcfg-eth0 将ONBOOT=no 改为yes即可 原文链接: http://yp ...

  10. spring cloud bus原理总结

    1.spring cloud bus spring cloud是按照spring的配置对一系列微服务框架的集成,spring cloud bus是其中一个微服务框架,用于实现微服务之间的通信. spr ...