# coding: utf-8

# In[1]:

import pandas as pd
import numpy as np
from sklearn import tree
from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import binarize
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import Normalizer
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score,recall_score,average_precision_score,auc
from imblearn.over_sampling import SMOTE

# In[37]:

data= pd.read_csv(r"D:\Users\sgg91044\Desktop\Copy of sampling.csv")
data.iloc[:,7:25] = data.iloc[:,7:25].apply(pd.to_numeric,errors='coerce')
data.Target = data.Target.astype("category")
for i in range(7,25):
med = np.median(data.iloc[:,i][data.iloc[:,i].isna() == False])
data.iloc[:,i] = data.iloc[:,i].fillna(med)
nz = Normalizer()
data.iloc[:,17:19]=pd.DataFrame(nz.fit_transform(data.iloc[:,17:19]),columns=data.iloc[:,17:19].columns)
data.iloc[:,7:10]=pd.DataFrame(nz.fit_transform(data.iloc[:,7:10]),columns=data.iloc[:,7:10].columns)
data.to_csv(r"D:\Users\sgg91044\Desktop\impution\AEM214_imputed_normalized.csv")

# In[2]:

data= pd.read_csv(r"D:\Users\sgg91044\Desktop\Copy of sampling.csv")
data.head()

# In[3]:

data.iloc[:,5:23] = data.iloc[:,5:23].apply(pd.to_numeric,errors='coerce')
data.Target = data.Target.astype("category")

# In[4]:

Y = data.Target
X = data.drop(columns='Target')

# In[5]:

X=X.drop(columns=['slotid','Recipe_Name','defect_count'])

# In[6]:

X

# In[7]:

X_train, X_test, y_train, y_test = train_test_split(
X, Y, test_size=0.2, random_state=0)

# In[8]:

sm = SMOTE(random_state=12, ratio = 1.0)
x_train_smote, y_train_smote = sm.fit_sample(X_train, y_train)

# In[9]:

print(y_train.value_counts(), np.bincount(y_train_smote))

# In[10]:

from sklearn.ensemble import RandomForestClassifier

# Make the random forest classifier
random_forest = RandomForestClassifier(n_estimators = 100, random_state = 50, verbose = 1, oob_score = True, n_jobs = -1)

# In[11]:

# Train on the training data
random_forest.fit(x_train_smote,y_train_smote)

# In[ ]:

# Make predictions on the test data
y_pred = random_forest.predict_proba(X_test)

# In[13]:

print(classification_report(y_pred=y_pred,y_true=y_test))

# In[14]:

f1_score(y_pred=y_pred,y_true=y_test)

# In[15]:

print("Accuracy of Random_forest:",round(accuracy_score(y_pred=y_pred,y_true=y_test) * 100,2),"%")
print("Sensitivity of Random_forest:",round(recall_score(y_pred=y_pred,y_true=y_test)*100,2),"%")

# In[16]:

print(confusion_matrix(y_pred=y_pred,y_true=y_test))

# In[21]:

svc=SVC(kernel='poly',degree=2,gamma=1,coef0=0)

# In[ ]:

svc.fit(x_train_smote,y_train_smote)

# In[ ]:

from sklearn.neural_network import MLPClassifier
mlp = MLPClassifier(activation='relu', solver='adam', alpha=0.0001)

# In[17]:

tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],
'C': [1, 10, 100, 1000]},
{'kernel': ['linear'], 'C': [1, 10, 100, 1000]},
{'kernel':['poly'],'degree':[2,3,5]}]
clf = GridSearchCV(SVC(),param_grid=tuned_parameters,cv=3,scoring='recall',verbose=True)
clf.fit(x_train_smote,y_train_smote)

# In[18]:

data= pd.read_csv(r"D:\Users\sgg91044\Desktop\impution\sampling1.csv")
data.iloc[:,7:26] = data.iloc[:,7:26].apply(pd.to_numeric,errors='coerce')
data.Target = data.Target.astype("category")
data.eqpid = data.eqpid.astype("category")
Y = data.Target
X = data.drop(columns='Target')
X=X.drop(columns=['eqpid','lotid','Chamber','slotid','Step','Recipie_Name','defect_count'])
X_train, X_test, y_train, y_test = train_test_split(
X, Y, test_size=0.2, random_state=0)
sm = SMOTE(random_state=12, ratio = 1.0)
x_train_smote, y_train_smote = sm.fit_sample(X_train, y_train)
print(y_train.value_counts(), np.bincount(y_train_smote))
from sklearn.ensemble import RandomForestClassifier

# Make the random forest classifier
random_forest = RandomForestClassifier(n_estimators = 100, random_state = 50, verbose = 1, oob_score = True, n_jobs = -1)
# Train on the training data
random_forest.fit(x_train_smote,y_train_smote)

# In[19]:

# Make predictions on the test data
y_pred = random_forest.predict(X_test)
print(classification_report(y_pred=y_pred,y_true=y_test))

# In[20]:

print(confusion_matrix(y_pred=y_pred,y_true=y_test))

# In[21]:

f1_score(y_pred=y_pred,y_true=y_test)

# In[22]:

print("Accuracy of Random_forest:",round(accuracy_score(y_pred=y_pred,y_true=y_test) * 100,2),"%")
print("Sensitivity of Random_forest:",round(recall_score(y_pred=y_pred,y_true=y_test)*100,2),"%")

# In[71]:

data= pd.read_csv(r"D:\Users\sgg91044\Desktop\impution\sampling3.csv")
data.iloc[:,7:25] = data.iloc[:,7:25].apply(pd.to_numeric,errors='coerce')
data.Target = data.Target.astype("category")
Y = data.Target
X = data.drop(columns='Target')
X=X.drop(columns=['eqpid','lotid','Chamber','slotid','Step','Recipie_Name','defect_count'])
X_train, X_test, y_train, y_test = train_test_split(
X, Y, test_size=0.2, random_state=0)
sm = SMOTE(random_state=12, ratio = 1.0)
x_train_smote, y_train_smote = sm.fit_sample(X_train, y_train)
print(y_train.value_counts(), np.bincount(y_train_smote))
from sklearn.ensemble import RandomForestClassifier

# Make the random forest classifier
random_forest = RandomForestClassifier(n_estimators = 100, random_state = 50, verbose = 1, oob_score = True, n_jobs = -1)
# Train on the training data
random_forest.fit(x_train_smote,y_train_smote)

# In[72]:

# Make predictions on the test data
y_pred = random_forest.predict(X_test)
print(classification_report(y_pred=y_pred,y_true=y_test))

# In[53]:

f1_score(y_pred=y_pred,y_true=y_test)

# In[54]:

print("Accuracy of Random_forest:",round(accuracy_score(y_pred=y_pred,y_true=y_test) * 100,2),"%")
print("Sensitivity of Random_forest:",round(recall_score(y_pred=y_pred,y_true=y_test)*100,2),"%")

# In[55]:

data= pd.read_csv(r"D:\Users\sgg91044\Desktop\impution\sampling2.csv")
data.iloc[:,7:25] = data.iloc[:,7:25].apply(pd.to_numeric,errors='coerce')
data.Target = data.Target.astype("category")
Y = data.Target
X = data.drop(columns='Target')
X=X.drop(columns=['eqpid','lotid','Chamber','slotid','Step','Recipie_Name','defect_count'])
X_train, X_test, y_train, y_test = train_test_split(
X, Y, test_size=0.2, random_state=0)
sm = SMOTE(random_state=12, ratio = 1.0)
x_train_smote, y_train_smote = sm.fit_sample(X_train, y_train)
print(y_train.value_counts(), np.bincount(y_train_smote))
from sklearn.ensemble import RandomForestClassifier

# Make the random forest classifier
random_forest = RandomForestClassifier(n_estimators = 100, random_state = 50, verbose = 1, oob_score = True, n_jobs = -1)
# Train on the training data
random_forest.fit(x_train_smote,y_train_smote)

# In[57]:

# Make predictions on the test data
y_pred = random_forest.predict(X_test)
print(classification_report(y_pred=y_pred,y_true=y_test))

# In[58]:

f1_score(y_pred=y_pred,y_true=y_test)

# In[59]:

print("Accuracy of Random_forest:",round(accuracy_score(y_pred=y_pred,y_true=y_test) * 100,2),"%")
print("Sensitivity of Random_forest:",round(recall_score(y_pred=y_pred,y_true=y_test)*100,2),"%")

# In[ ]:

import flask

我的代码-models的更多相关文章

  1. 【Django】基于Django架构网站代码的目录结构

     经典的Django项目源码目录结构 Django在一个项目的目录结构划分方面缺乏必要的规范.在Django的官方文档中并没有给出大型项目的代码建议目录结构,网上的文章也是根据项目的不同结构也有适当的 ...

  2. 使用 CodeIgniter 框架快速开发 PHP 应用(三)

    原文:使用 CodeIgniter 框架快速开发 PHP 应用(三) 分析网站结构既然我们已经安装 CI ,我们开始了解它如何工作.读者已经知道 CI 实现了MVC式样. 通过对目录和文件的内容进行分 ...

  3. Django__RBAC

    RBAC : 基于角色的权限访问控制(Role-Based Access Control) RBAC 模型作为目前最为广泛接受的权限模型 角色访问控制(RBAC)引入了Role的概念,目的是为了隔离U ...

  4. 用beego开发服务端应用

    用beego开发服务端应用 说明 Quick Start 安装 创建应用 编译运行 打包发布 代码生成 开发文档 目录结构说明 使用配置文件 beego默认参数 路由设置 路由的表述方式 直接设置路由 ...

  5. 从零搭建基于golang的个人博客网站

    原文链接 : http://www.bugclosed.com/post/14 从零搭建个人博客网站需要包括云服务器(虚拟主机),域名,程序环境,博客程序等方面.本博客 就是通过这几个环节建立起来的, ...

  6. Django——微信消息推送

    前言 微信公众号的分类 微信消息推送 公众号 已认证公众号 服务号 已认证服务号 企业号 基于:微信认证服务号 主动推送微信消息. 前提:关注服务号 环境:沙箱环境 沙箱环境地址: https://m ...

  7. xadmin的使用

    01-下载源码 GitHub地址:https://github.com/sshwsfc/xadmin # 安装xadmin 由于使用的是Django2.0的版本,所以需要安装xadmin项目djang ...

  8. python django基础一web框架的本质

    web框架的本质就是一个socket服务端,而浏览器就是一个socker客户端,基于请求做出相应,客户端先请求,服务器做出对应响应 按照http协议的请求发送,服务器按照http协议来相应,这样的通信 ...

  9. Django之win7下安装与命令行工具

    Django之win7下安装与命令行工具 下载安装 pip3 install django 注意:自动添加环境变量 测试是否安装成功 1.输入python 2.输入import django 3.输入 ...

随机推荐

  1. WinForm中预览Office文件

    WinForm预览Office文档 使用WinForm, WPF, Office组件 原理:使用Office COM组件将Word,Excel转换为XPS文档, 将WPF的DocumentViewer ...

  2. jquery easyui的应用-2

    有两个版本: freeware edition, commercial edition easyui的 datagrid 实际上是一个table, 其数据来源 通过 url属性来从后台的php页面 获 ...

  3. Query the tables and index which will caus rebuild index fail

    On MSSQL server database, while rebuild index failed, we can use the follow sql statement to see if ...

  4. GPU并行的基础知识

  5. java 保存到mysql数据库中文乱码

    <property name="jdbcUrl">jdbc:mysql://localhost:3306/company?useUnicode=true&cha ...

  6. 《温故而知新》JAVA基础三

    面向对象 现实定义: 购买手机 阐述描述配置尺寸啥的,要求能打电话,然后服务员给你拿出一款手机,你所阐述的就是类,服务员给你的就是对象 package com.xie public class Tel ...

  7. java jdk动态代理学习记录

    转载自: https://www.jianshu.com/p/3616c70cb37b JDK自带的动态代理主要是指,实现了InvocationHandler接口的类,会继承一个invoke方法,通过 ...

  8. 服务列表中找不到mysql

    服务列表中找不到mysql - 解决办法 1.在开始处输入cmd,找到cmd选择以管理员身份运行(必须以管理员运行,直接win+r打开无效) 2.进入到MySQL安装目录的bin目录 3.执行mysq ...

  9. ionic调用手机系统的拨打电话

    android调用如下: 在config.xml中添加 <access origin="tel:*" launch-external="yes" /> ...

  10. 锯齿状优惠券css绘制

    对于图上优惠券左右两侧的半圆锯齿效果,两种处理方式,一种直接使用切图进行处理,一种是纯css进行效果绘制.切图的就不再赘述,主要说纯css效果绘制 绘制的结果如下图: 难点在于两侧的半圆孔是透明色,不 ...