我的代码-models
# coding: utf-8
# In[1]:
import pandas as pd
import numpy as np
from sklearn import tree
from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import binarize
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import Normalizer
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score,recall_score,average_precision_score,auc
from imblearn.over_sampling import SMOTE
# In[37]:
data= pd.read_csv(r"D:\Users\sgg91044\Desktop\Copy of sampling.csv")
data.iloc[:,7:25] = data.iloc[:,7:25].apply(pd.to_numeric,errors='coerce')
data.Target = data.Target.astype("category")
for i in range(7,25):
med = np.median(data.iloc[:,i][data.iloc[:,i].isna() == False])
data.iloc[:,i] = data.iloc[:,i].fillna(med)
nz = Normalizer()
data.iloc[:,17:19]=pd.DataFrame(nz.fit_transform(data.iloc[:,17:19]),columns=data.iloc[:,17:19].columns)
data.iloc[:,7:10]=pd.DataFrame(nz.fit_transform(data.iloc[:,7:10]),columns=data.iloc[:,7:10].columns)
data.to_csv(r"D:\Users\sgg91044\Desktop\impution\AEM214_imputed_normalized.csv")
# In[2]:
data= pd.read_csv(r"D:\Users\sgg91044\Desktop\Copy of sampling.csv")
data.head()
# In[3]:
data.iloc[:,5:23] = data.iloc[:,5:23].apply(pd.to_numeric,errors='coerce')
data.Target = data.Target.astype("category")
# In[4]:
Y = data.Target
X = data.drop(columns='Target')
# In[5]:
X=X.drop(columns=['slotid','Recipe_Name','defect_count'])
# In[6]:
X
# In[7]:
X_train, X_test, y_train, y_test = train_test_split(
X, Y, test_size=0.2, random_state=0)
# In[8]:
sm = SMOTE(random_state=12, ratio = 1.0)
x_train_smote, y_train_smote = sm.fit_sample(X_train, y_train)
# In[9]:
print(y_train.value_counts(), np.bincount(y_train_smote))
# In[10]:
from sklearn.ensemble import RandomForestClassifier
# Make the random forest classifier
random_forest = RandomForestClassifier(n_estimators = 100, random_state = 50, verbose = 1, oob_score = True, n_jobs = -1)
# In[11]:
# Train on the training data
random_forest.fit(x_train_smote,y_train_smote)
# In[ ]:
# Make predictions on the test data
y_pred = random_forest.predict_proba(X_test)
# In[13]:
print(classification_report(y_pred=y_pred,y_true=y_test))
# In[14]:
f1_score(y_pred=y_pred,y_true=y_test)
# In[15]:
print("Accuracy of Random_forest:",round(accuracy_score(y_pred=y_pred,y_true=y_test) * 100,2),"%")
print("Sensitivity of Random_forest:",round(recall_score(y_pred=y_pred,y_true=y_test)*100,2),"%")
# In[16]:
print(confusion_matrix(y_pred=y_pred,y_true=y_test))
# In[21]:
svc=SVC(kernel='poly',degree=2,gamma=1,coef0=0)
# In[ ]:
svc.fit(x_train_smote,y_train_smote)
# In[ ]:
from sklearn.neural_network import MLPClassifier
mlp = MLPClassifier(activation='relu', solver='adam', alpha=0.0001)
# In[17]:
tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],
'C': [1, 10, 100, 1000]},
{'kernel': ['linear'], 'C': [1, 10, 100, 1000]},
{'kernel':['poly'],'degree':[2,3,5]}]
clf = GridSearchCV(SVC(),param_grid=tuned_parameters,cv=3,scoring='recall',verbose=True)
clf.fit(x_train_smote,y_train_smote)
# In[18]:
data= pd.read_csv(r"D:\Users\sgg91044\Desktop\impution\sampling1.csv")
data.iloc[:,7:26] = data.iloc[:,7:26].apply(pd.to_numeric,errors='coerce')
data.Target = data.Target.astype("category")
data.eqpid = data.eqpid.astype("category")
Y = data.Target
X = data.drop(columns='Target')
X=X.drop(columns=['eqpid','lotid','Chamber','slotid','Step','Recipie_Name','defect_count'])
X_train, X_test, y_train, y_test = train_test_split(
X, Y, test_size=0.2, random_state=0)
sm = SMOTE(random_state=12, ratio = 1.0)
x_train_smote, y_train_smote = sm.fit_sample(X_train, y_train)
print(y_train.value_counts(), np.bincount(y_train_smote))
from sklearn.ensemble import RandomForestClassifier
# Make the random forest classifier
random_forest = RandomForestClassifier(n_estimators = 100, random_state = 50, verbose = 1, oob_score = True, n_jobs = -1)
# Train on the training data
random_forest.fit(x_train_smote,y_train_smote)
# In[19]:
# Make predictions on the test data
y_pred = random_forest.predict(X_test)
print(classification_report(y_pred=y_pred,y_true=y_test))
# In[20]:
print(confusion_matrix(y_pred=y_pred,y_true=y_test))
# In[21]:
f1_score(y_pred=y_pred,y_true=y_test)
# In[22]:
print("Accuracy of Random_forest:",round(accuracy_score(y_pred=y_pred,y_true=y_test) * 100,2),"%")
print("Sensitivity of Random_forest:",round(recall_score(y_pred=y_pred,y_true=y_test)*100,2),"%")
# In[71]:
data= pd.read_csv(r"D:\Users\sgg91044\Desktop\impution\sampling3.csv")
data.iloc[:,7:25] = data.iloc[:,7:25].apply(pd.to_numeric,errors='coerce')
data.Target = data.Target.astype("category")
Y = data.Target
X = data.drop(columns='Target')
X=X.drop(columns=['eqpid','lotid','Chamber','slotid','Step','Recipie_Name','defect_count'])
X_train, X_test, y_train, y_test = train_test_split(
X, Y, test_size=0.2, random_state=0)
sm = SMOTE(random_state=12, ratio = 1.0)
x_train_smote, y_train_smote = sm.fit_sample(X_train, y_train)
print(y_train.value_counts(), np.bincount(y_train_smote))
from sklearn.ensemble import RandomForestClassifier
# Make the random forest classifier
random_forest = RandomForestClassifier(n_estimators = 100, random_state = 50, verbose = 1, oob_score = True, n_jobs = -1)
# Train on the training data
random_forest.fit(x_train_smote,y_train_smote)
# In[72]:
# Make predictions on the test data
y_pred = random_forest.predict(X_test)
print(classification_report(y_pred=y_pred,y_true=y_test))
# In[53]:
f1_score(y_pred=y_pred,y_true=y_test)
# In[54]:
print("Accuracy of Random_forest:",round(accuracy_score(y_pred=y_pred,y_true=y_test) * 100,2),"%")
print("Sensitivity of Random_forest:",round(recall_score(y_pred=y_pred,y_true=y_test)*100,2),"%")
# In[55]:
data= pd.read_csv(r"D:\Users\sgg91044\Desktop\impution\sampling2.csv")
data.iloc[:,7:25] = data.iloc[:,7:25].apply(pd.to_numeric,errors='coerce')
data.Target = data.Target.astype("category")
Y = data.Target
X = data.drop(columns='Target')
X=X.drop(columns=['eqpid','lotid','Chamber','slotid','Step','Recipie_Name','defect_count'])
X_train, X_test, y_train, y_test = train_test_split(
X, Y, test_size=0.2, random_state=0)
sm = SMOTE(random_state=12, ratio = 1.0)
x_train_smote, y_train_smote = sm.fit_sample(X_train, y_train)
print(y_train.value_counts(), np.bincount(y_train_smote))
from sklearn.ensemble import RandomForestClassifier
# Make the random forest classifier
random_forest = RandomForestClassifier(n_estimators = 100, random_state = 50, verbose = 1, oob_score = True, n_jobs = -1)
# Train on the training data
random_forest.fit(x_train_smote,y_train_smote)
# In[57]:
# Make predictions on the test data
y_pred = random_forest.predict(X_test)
print(classification_report(y_pred=y_pred,y_true=y_test))
# In[58]:
f1_score(y_pred=y_pred,y_true=y_test)
# In[59]:
print("Accuracy of Random_forest:",round(accuracy_score(y_pred=y_pred,y_true=y_test) * 100,2),"%")
print("Sensitivity of Random_forest:",round(recall_score(y_pred=y_pred,y_true=y_test)*100,2),"%")
# In[ ]:
import flask
我的代码-models的更多相关文章
- 【Django】基于Django架构网站代码的目录结构
经典的Django项目源码目录结构 Django在一个项目的目录结构划分方面缺乏必要的规范.在Django的官方文档中并没有给出大型项目的代码建议目录结构,网上的文章也是根据项目的不同结构也有适当的 ...
- 使用 CodeIgniter 框架快速开发 PHP 应用(三)
原文:使用 CodeIgniter 框架快速开发 PHP 应用(三) 分析网站结构既然我们已经安装 CI ,我们开始了解它如何工作.读者已经知道 CI 实现了MVC式样. 通过对目录和文件的内容进行分 ...
- Django__RBAC
RBAC : 基于角色的权限访问控制(Role-Based Access Control) RBAC 模型作为目前最为广泛接受的权限模型 角色访问控制(RBAC)引入了Role的概念,目的是为了隔离U ...
- 用beego开发服务端应用
用beego开发服务端应用 说明 Quick Start 安装 创建应用 编译运行 打包发布 代码生成 开发文档 目录结构说明 使用配置文件 beego默认参数 路由设置 路由的表述方式 直接设置路由 ...
- 从零搭建基于golang的个人博客网站
原文链接 : http://www.bugclosed.com/post/14 从零搭建个人博客网站需要包括云服务器(虚拟主机),域名,程序环境,博客程序等方面.本博客 就是通过这几个环节建立起来的, ...
- Django——微信消息推送
前言 微信公众号的分类 微信消息推送 公众号 已认证公众号 服务号 已认证服务号 企业号 基于:微信认证服务号 主动推送微信消息. 前提:关注服务号 环境:沙箱环境 沙箱环境地址: https://m ...
- xadmin的使用
01-下载源码 GitHub地址:https://github.com/sshwsfc/xadmin # 安装xadmin 由于使用的是Django2.0的版本,所以需要安装xadmin项目djang ...
- python django基础一web框架的本质
web框架的本质就是一个socket服务端,而浏览器就是一个socker客户端,基于请求做出相应,客户端先请求,服务器做出对应响应 按照http协议的请求发送,服务器按照http协议来相应,这样的通信 ...
- Django之win7下安装与命令行工具
Django之win7下安装与命令行工具 下载安装 pip3 install django 注意:自动添加环境变量 测试是否安装成功 1.输入python 2.输入import django 3.输入 ...
随机推荐
- WinForm中预览Office文件
WinForm预览Office文档 使用WinForm, WPF, Office组件 原理:使用Office COM组件将Word,Excel转换为XPS文档, 将WPF的DocumentViewer ...
- jquery easyui的应用-2
有两个版本: freeware edition, commercial edition easyui的 datagrid 实际上是一个table, 其数据来源 通过 url属性来从后台的php页面 获 ...
- Query the tables and index which will caus rebuild index fail
On MSSQL server database, while rebuild index failed, we can use the follow sql statement to see if ...
- GPU并行的基础知识
- java 保存到mysql数据库中文乱码
<property name="jdbcUrl">jdbc:mysql://localhost:3306/company?useUnicode=true&cha ...
- 《温故而知新》JAVA基础三
面向对象 现实定义: 购买手机 阐述描述配置尺寸啥的,要求能打电话,然后服务员给你拿出一款手机,你所阐述的就是类,服务员给你的就是对象 package com.xie public class Tel ...
- java jdk动态代理学习记录
转载自: https://www.jianshu.com/p/3616c70cb37b JDK自带的动态代理主要是指,实现了InvocationHandler接口的类,会继承一个invoke方法,通过 ...
- 服务列表中找不到mysql
服务列表中找不到mysql - 解决办法 1.在开始处输入cmd,找到cmd选择以管理员身份运行(必须以管理员运行,直接win+r打开无效) 2.进入到MySQL安装目录的bin目录 3.执行mysq ...
- ionic调用手机系统的拨打电话
android调用如下: 在config.xml中添加 <access origin="tel:*" launch-external="yes" /> ...
- 锯齿状优惠券css绘制
对于图上优惠券左右两侧的半圆锯齿效果,两种处理方式,一种直接使用切图进行处理,一种是纯css进行效果绘制.切图的就不再赘述,主要说纯css效果绘制 绘制的结果如下图: 难点在于两侧的半圆孔是透明色,不 ...