hadoop的job执行在yarn中内存分配调节————Container [pid=108284,containerID=container_e19_1533108188813_12125_01_000002] is running beyond virtual memory limits. Current usage: 653.1 MB of 2 GB physical memory used
实际遇到的真实问题,解决方法:
1.调整虚拟内存率yarn.nodemanager.vmem-pmem-ratio (这个hadoop默认是2.1)
2.调整map与reduce的在AM中的大小大于yarn里RM可分配的最小值yarn.scheduler.minimum-allocation-mb 大小因为在Container中计算使用的虚拟内存来自
map虚拟内大小=max(yarn.scheduler.minimum-allocation-mb,mapreduce.map.memory.mb) * yarn.nodemanager.vmem-pmem-ratio,同理reduce虚拟内存大小也是这样计算...
具体说明相关参数含义[文章参考:http://blog.chinaunix.net/uid-25691489-id-5587957.html与https://blog.csdn.net/u012042963/article/details/53099638]:
ResourceManager配置:
RM的内存资源配置,主要是通过下面的两个参数进行的(这两个值是Yarn平台特性,应在yarn-site.xml中配置好):
yarn.scheduler.minimum-allocation-mb
yarn.scheduler.maximum-allocation-mb
说明:单个容器可申请的最小与最大内存,应用在运行申请内存时不能超过最大值,小于最小值则分配最小值,从这个角度看,最小值有点想操作系统中的页;
最小值还有另外一种用途,计算一个节点的最大container数目。注!!:这两个值一经设定不能动态改变(此处所说的动态改变是指应用运行时)。
NodeManager配置:
NM的内存资源配置,主要是通过下面两个参数进行的(这两个值是Yarn平台特性,应在yarn-sit.xml中配置) :
yarn.nodemanager.resource.memory-mb ===>每个节点可用的最大内存
yarn.nodemanager.vmem-pmem-ratio ===>虚拟内存率
说明:每个节点可用的最大内存:
RM中的两个值(yarn.scheduler.minimum-allocation-mb与yarn.scheduler.maximum-allocation-mb)不应该超过此值,
此数值可以用于计算container最大数目,即:用此值除以RM中的最小容器内存;
虚拟内存率:
是占task所用内存的百分比,默认值为2.1倍,
注意!!:第一个参数是不可修改的,一旦设置,整个运行过程中不可动态修改,且该值的默认大小是8G,即使计算机内存不足8G也会按着8G内存来使用。
ApplicationMaster配置:
AM内存配置相关参数,此处以MapReduce为例进行说明(这两个值是AM特性,应在mapred-site.xml中配置),如下:
mapreduce.map.memory.mb
mapreduce.reduce.memory.mb
说明:这两个参数指定用于MapReduce的两个任务(Map and Reduce task)的内存大小,其值应该在RM中的最大(yarn.scheduler.maximum-allocation-mb)最小(yarn.scheduler.minimum-allocation-mb)container之间,如果没有配置则通过如下简单公式获得:
max(MIN_CONTAINER_SIZE, (Total Available RAM) / containers))
一般的reduce应该是map的2倍。
注!!:这两个值可以在应用启动时通过参数改变
AM中JVM相关设置:
AM中其它与内存相关的参数,还有JVM相关的参数,这些参数可以通过如下选项配置:
mapreduce.map.java.opts
mapreduce.reduce.java.opts
说明:这两个参主要是为需要运行JVM程序(java、scala等)准备的,通过这两个设置可以向JVM中传递参数的,与内存有关的是,-Xmx,-Xms等选项;此数值大小,应该在AM中的mapreduce.map.memory.mb和mapreduce.reduce.memory.mb之间。
实际案例:
Container [pid=108284,containerID=container_e19_1533108188813_12125_01_000002] is running beyond virtual memory limits. Current usage: 653.1 MB of 2 GB physical memory used; 5.4 GB of 4.2 GB virtual memory used. Killing container.
<property>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>2.1</value>
<source>yarn-default.xml</source>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>8192</value>
<source>yarn-default.xml</source>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>8192</value>
<source>yarn-default.xml</source>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>1024</value>
<source>yarn-default.xml</source>
</property>
<property>
<name>mapreduce.map.memory.mb</name>
<value>1024</value>
<source>mapred-default.xml</source>
</property>
<property>
<name>mapreduce.reduce.memory.mb</name>
<value>1024</value>
<source>mapred-default.xml</source>
</property>
通过配置我们看到,容器的最小内存和最大内存分别为:1024m和8192m,而reduce设置的默认值为1024m,map也是默认值,所以两个值都为1024m,所以两个值和为2G即是log中" 653.1 MB of 2 GB physical memory used" 这个2G。而由于使用了默认虚拟内存率(也就是2.1倍),所以对于Map Task和Reduce Task总的虚拟内存为都为2*2.1=4.2G,这个4.2也是log中的"5.4 GB of 4.2 GB virtual memory used" 计算的这个虚拟内存。而应用的虚拟内存超过了这个数值,故报错 。解决办法:在启动Yarn是调节虚拟内存率或者应用运行时调节内存大小
另外一个案例:
Container[pid=41884,containerID=container_1405950053048_0016_01_000284] is running beyond virtual memory limits. Current usage: 314.6 MB of 2.9 GB physical memory used; 8.7 GB of 6.2 GB virtual memory used. Killing container.
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>100000</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>10000</value>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>3000</value>
</property>
<property>
<name>mapreduce.reduce.memory.mb</name>
<value>2000</value>
</property>
通过配置我们看到,容器的最小内存和最大内存分别为:3000m和10000m,而reduce设置的默认值小于2000m,map没有设置,所以两个值均为3000m,也就是log中的“2.9 GB physical
memory used”。而由于使用了默认虚拟内存率(也就是2.1倍),所以对于Map Task和Reduce Task总的虚拟内存为都为3000*2.1=6.2G。而应用的虚拟内存超过了这个数值,故报错 。解决办
法:在启动Yarn是调节虚拟内存率或者应用运行时调节内存大小。
这个调整对应用非常有用!!!
hadoop的job执行在yarn中内存分配调节————Container [pid=108284,containerID=container_e19_1533108188813_12125_01_000002] is running beyond virtual memory limits. Current usage: 653.1 MB of 2 GB physical memory used的更多相关文章
- Hadoop YARN中内存的设置
在YARN中,资源管理由ResourceManager和NodeManager共同完成,其中,ResourceManager中的调度器负责资源的分配,而NodeManager则负责资源的供给和隔离.R ...
- spark内存分配
问题描述 在测试spark on yarn时,发现一些内存分配上的问题,具体如下. 在$SPARK_HOME/conf/spark-env.sh中配置如下参数: SPARK_EXECUTOR_INST ...
- mapreduce on yarn简单内存分配解释
关于mapreduce程序运行在yarn上时内存的分配一直是一个让我蒙圈的事情,单独查任何一个资料都不能很好的理解透彻.于是,最近查了大量的资料,综合各种解释,终于理解到了一个比较清晰的程度,在这里将 ...
- java中内存分配策略及堆和栈的比较
Java把内存分成两种,一种叫做栈内存,一种叫做堆内存 在函数中定义的一些基本类型的变量和对象的引用变量都是在函数的栈内存中分配.当在一段代码块中定义一个变量时,java就在栈中为这个变量分配内存空间 ...
- C语言中内存分配 (转)
在任何程序设计环境及语言中,内存管理都十分重要.在目前的计算机系统或嵌入式系统中,内存资源仍然是有限的.因此在程序设计中,有效地管理内存资源是程序员首先考虑的问题. 第1节主要介绍内存管理基本概念,重 ...
- 【转】C语言中内存分配
原文:C语言中内存分配 在任何程序设计环境及语言中,内存管理都十分重要.在目前的计算机系统或嵌入式系统中,内存资源仍然是有限的.因此在程序设计中,有效地管理内存资源是程序员首先考虑的问题. 第1节主要 ...
- C语言中内存分配
C语言中内存分配 在任何程序设计环境及语言中,内存管理都十分重要.在目前的计算机系统或嵌入式系统中,内存资源仍然是有限的.因此在程序设计中,有效地管理内存资源是程序员首先考虑的问题. 第1节主要 ...
- C++中内存分配、函数调用和返回值问题
转载博客:http://blog.csdn.net/q_l_s/article/details/52176159(源地址找不到,就贴了这位大神的博客地址,他也是转载的,不过要是学习的话,他的博客很不错 ...
- JAVA中内存分配的问题
JAVA中内存分配的问题 1. 有这样一种说法,如今争锋于IT战场的两大势力,MS一族偏重于底层实现,Java一族偏重于系统架构.说法根据无从考证,但从两大势力各自的社区力量和图书市场已有佳作不难看出 ...
随机推荐
- python装饰器的详细解析
什么是装饰器? python装饰器(fuctional decorators)就是用于拓展原来函数功能的一种函数,目的是在不改变原函数名(或类名)的情况下,给函数增加新的功能. 这个函数的特殊之处在于 ...
- SQLServer调WebService & 错误解决:请求格式无法识别
(sqlServer 2008 + VS2010) 首先,对服务器进行配置. sp_configure ; GO RECONFIGURE; GO sp_configure ; GO RECONFIGU ...
- PythonStudy——内存管理机制 Memory management mechanism
一.变量与对象 关系图如下: 1.变量:通过变量指针引用对象 变量指针指向具体对象的内存空间,取对象的值. 2.对象:类型已知,每个对象都包含一个头部信息(头部信息:类型标识符和引用计数器) 注意: ...
- DevExpress中barManager下的toolbar如何在panel中显示
如题,我的Dev Toolbar需要在一个pannel中显示,并且居于最顶部.可是好像默认情况下toolbar都是在窗体的最顶部的,如何设置才能使其位于一个panel的最顶部呢? 解决方案:经过测试, ...
- Centos7.4安装配置haproxy和Keepalived
系统版本是centos7.4的 [root@data-1-1 ~]# cat /etc/redhat-release CentOS Linux release 7.4.1708 (Core) [roo ...
- SpringBoot事务注解@Transactional
SpringBoot提供了非常方便的事务操作,通过注解就可以实现事务的回滚,非常方便快捷,下面我们就说一下如何进行事务操作. 1. 事务说明 在Spring中,事务有两种实现方式,分别是编程式事务管理 ...
- windows 安装lua-5.3.4 --引用自https://blog.csdn.net/wangtong01/article/details/78296369
版权声明:本文为博主原创文章,转载时请标明出处.http://blog.csdn.net/wangtong01 https://blog.csdn.net/wangtong01/article/det ...
- flex 布局压缩问题
在 flex 布局中,当有一个元素宽度过长时,另一个元素宽度会被压缩, 如下图: 解决办法:在不想被压缩的元素上加上样式 flex-shrink: 0; 效果图:
- flutter环境配置
java环境安装 做基于android的原生app,首先需要安装java环境,需要到官网https://www.oracle.com/technetwork/java/javase/downloads ...
- jenkins搭配git 从远程端拉取代码回来执行的问题
jenkins上git 拉取回来的代码是在 工作区的文件夹里面(默认每次拉取最新的版本下来的)(不是自己本地仓库的那个) (晕~~,一开始以为是拉取回自己的本地仓库) 找到jenkins git里面 ...