原题传送门

一看这不是水题嘛。

枚举+乱搞。。特别容易、。。、

然后a[i]取值范围出现了

当当当当~:|a[i]|<=10^10000!!!!!

我去,这是什么鬼。。

高精度?

然后默默算了算。。

O(10000*n*m)BOOM!TLE..

好吧,高精度没用了。。

那么我们再来看一看。。

根据某位大牛的说法x mod p=0那么(x+p)mod p=0;

我们反过来

假设一个数a=k*x+q

那么a mod x=q;

所以我们可以直接%,不用怕结果会改变,,边读边膜。

首先我们要多找几个质数。。(10000左右)

5个就差不多了。

然后我们要把1~质数最大值的数都代入方程里check一下,看那些是方程的解(注意!要5个都代!不然有可能出现膜数的倍数!)

然后就是寻找解*k的答案啦(在1~m中找)

下面贴代码:

注意!对于这道鬼畜的题目,在跑的慢的评测机上strlen()极容易TLE(我也不知道为什么。。也许常数太大了。。)

所以对于字符串的判断我们要用(for int j=0;num[j];++j)来进行。。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
char num[];
int a[][];
int b[][];
int ans[];
int ans1,n,m;
const int mod[]={,,,,};
void check(int x)
{
for(int i=;i<;i++)
for(int j=n;j>=;j--)
b[i][x%mod[i]]=(b[i][x%mod[i]]*(x%mod[i])+a[i][j])%mod[i];
}
bool judge(int x)
{
for(int i=;i<;i++)
if(b[i][x%mod[i]])return ;
return ;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%s",num);
for(int j=;num[j];++j)
{
if(num[j]>=''&&num[j]<='')
{
for(int k=;k<;k++)
a[k][i]=(a[k][i]*+num[j]-'')%mod[k];
}
}
if(num[]=='-')
{
for(int k=;k<;k++)
a[k][i]*=-;
}
}
for(int i=;i<;i++)check(i);
for(int i=;i<=m;i++)
if(judge(i))ans[++ans1]=i;
printf("%d\n",ans1);
for(int i=;i<=ans1;i++)
printf("%d\n",ans[i]);
}

解方程(NOIP2014)Warning!(前方高能!!)的更多相关文章

  1. 洛谷P2312 解方程 [noip2014] 数论

    正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...

  2. 刷题总结——解方程(NOIP2014)

    题目: 题目描述 已知多项式方程: a0+a1x+a2x2+…+anxn=0 求这个方程在[1,m]内的整数解(n 和 m 均为正整数). 输入格式 输入共 n+2 行. 第一行包含 2 个整数 n. ...

  3. bzoj 3751: [NOIP2014]解方程 同余系枚举

    3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...

  4. 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】

    3751: [NOIP2014]解方程 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4856  Solved: 983[Submit][Status ...

  5. BZOJ 3751: [NOIP2014]解方程 数学

    3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...

  6. LOJ2503 NOIP2014 解方程 【HASH】

    LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...

  7. [NOIP2014]解方程

    3732 解方程  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 输入描述 Input Descrip ...

  8. 【NOIP2014】解方程

    题目描述 已知多项式方程 \[a_0 + a_1x + a_2x^2 + \dots +a_nx^n=0\] 求这个方程在\([1,m]\)内的整数解(\(n\)和\(m\)均为正整数). 输入输出格 ...

  9. [noip2014]P2312 解方程

    P2312 解方程 其实这道题就是求一个1元n次方程在区间[1, m]上的整数解. 我们枚举[1, m]上的所有整数,带进多项式中看看结果是不是0即可. 这里有一个技巧就是秦九韶算法,请读者自行查看学 ...

  10. vijos P1915 解方程 加强版

    背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已 ...

随机推荐

  1. 菜鸟教程perl总结

    数据类型有:  标量$, 数组@,哈希% 数组声明 :  @hits = (25, 30, 40);  或者  @sites = qw/google taobao runoob/; 数组操作 pop, ...

  2. C# 中的正则简单例子

    public static void Main() { Regex rgx = new Regex(@"[S|s]et-[C|c]ookie: (?<cookieName>\w+ ...

  3. PHP.23-ThinkPHP框架的三种模型实例化-(D()方法与M()方法的区别)

    三种模型实例化 原则上:每个数据表应对应一个模型类(Home/Model/GoodsModel.class.php --> 表tp_goods) 1.直接实例化 和实例化其他类库一样实例化模型类 ...

  4. Android 导出traces.txt 遇到的坑

    我一直以为traces.txt 导出需要root .因为每当我 cd data ll 然后就会告诉我 Permission denied 后来我问同事,怎么导出traces.txt 文件.同事说很简单 ...

  5. DOM事件里封装方法eventUtil

    var eventUtil={ //添加句柄 addHandler:function (element,type,handler) { //element相当于btn2,type此时用的是click类 ...

  6. java.math.BigDecimal cannot be cast to java.lang.String解决方法

    从mysql数据库里取decimal(18,2)封装到Map<String,String>中 BigDecimal b = new BigDecimal(resultMap.get(&qu ...

  7. 【Training versus Testing】林轩田机器学习基石

    接着上一讲留下的关子,机器学习是否可行与假设集合H的数量M的关系. 机器学习是否可行的两个关键点: 1. Ein(g)是否足够小(在训练集上的表现是否出色) 2. Eout(g)是否与Ein(g)足够 ...

  8. apt-get阿里源

    备份原有配置文件 mv /etc/apt/sources.list /etc/apt/sources.list.bak 新建一个文件 vi /etc/apt/sources.list 复制以下内容到新 ...

  9. freemaker参考地址

    https://zhidao.baidu.com/question/1304215193023416939.html

  10. python 学习分享-rabbitmq

    一.RabbitMQ 消息队列介绍 RabbitMQ也是消息队列,那RabbitMQ和之前python的Queue有什么区别么? py 消息队列: 线程 queue(同一进程下线程之间进行交互) 进程 ...