解方程(NOIP2014)Warning!(前方高能!!)
一看这不是水题嘛。
枚举+乱搞。。特别容易、。。、
然后a[i]取值范围出现了
当当当当~:|a[i]|<=10^10000!!!!!
我去,这是什么鬼。。
高精度?
然后默默算了算。。
O(10000*n*m)BOOM!TLE..
好吧,高精度没用了。。
那么我们再来看一看。。
根据某位大牛的说法x mod p=0那么(x+p)mod p=0;
我们反过来
假设一个数a=k*x+q
那么a mod x=q;
所以我们可以直接%,不用怕结果会改变,,边读边膜。
首先我们要多找几个质数。。(10000左右)
5个就差不多了。
然后我们要把1~质数最大值的数都代入方程里check一下,看那些是方程的解(注意!要5个都代!不然有可能出现膜数的倍数!)
然后就是寻找解*k的答案啦(在1~m中找)
下面贴代码:
注意!对于这道鬼畜的题目,在跑的慢的评测机上strlen()极容易TLE(我也不知道为什么。。也许常数太大了。。)
所以对于字符串的判断我们要用(for int j=0;num[j];++j)来进行。。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
char num[];
int a[][];
int b[][];
int ans[];
int ans1,n,m;
const int mod[]={,,,,};
void check(int x)
{
for(int i=;i<;i++)
for(int j=n;j>=;j--)
b[i][x%mod[i]]=(b[i][x%mod[i]]*(x%mod[i])+a[i][j])%mod[i];
}
bool judge(int x)
{
for(int i=;i<;i++)
if(b[i][x%mod[i]])return ;
return ;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%s",num);
for(int j=;num[j];++j)
{
if(num[j]>=''&&num[j]<='')
{
for(int k=;k<;k++)
a[k][i]=(a[k][i]*+num[j]-'')%mod[k];
}
}
if(num[]=='-')
{
for(int k=;k<;k++)
a[k][i]*=-;
}
}
for(int i=;i<;i++)check(i);
for(int i=;i<=m;i++)
if(judge(i))ans[++ans1]=i;
printf("%d\n",ans1);
for(int i=;i<=ans1;i++)
printf("%d\n",ans[i]);
}
解方程(NOIP2014)Warning!(前方高能!!)的更多相关文章
- 洛谷P2312 解方程 [noip2014] 数论
正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...
- 刷题总结——解方程(NOIP2014)
题目: 题目描述 已知多项式方程: a0+a1x+a2x2+…+anxn=0 求这个方程在[1,m]内的整数解(n 和 m 均为正整数). 输入格式 输入共 n+2 行. 第一行包含 2 个整数 n. ...
- bzoj 3751: [NOIP2014]解方程 同余系枚举
3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...
- 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】
3751: [NOIP2014]解方程 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4856 Solved: 983[Submit][Status ...
- BZOJ 3751: [NOIP2014]解方程 数学
3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...
- LOJ2503 NOIP2014 解方程 【HASH】
LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...
- [NOIP2014]解方程
3732 解方程 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description 输入描述 Input Descrip ...
- 【NOIP2014】解方程
题目描述 已知多项式方程 \[a_0 + a_1x + a_2x^2 + \dots +a_nx^n=0\] 求这个方程在\([1,m]\)内的整数解(\(n\)和\(m\)均为正整数). 输入输出格 ...
- [noip2014]P2312 解方程
P2312 解方程 其实这道题就是求一个1元n次方程在区间[1, m]上的整数解. 我们枚举[1, m]上的所有整数,带进多项式中看看结果是不是0即可. 这里有一个技巧就是秦九韶算法,请读者自行查看学 ...
- vijos P1915 解方程 加强版
背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已 ...
随机推荐
- 爬取多个url页面数据--手动实现
# -*- coding: utf-8 -*- import scrapy from qiubaiByPages.items import QiubaibypagesItem class Qiubai ...
- Nginx模块详解
Nginx模块介绍 核心模块:core module 标准模块: HTTP modules: Standard HTTP modules Optional HTTP modules Mail modu ...
- 8,Linux系统基础优化及常用命令
Linux基础系统优化 引言没有,只有一张图. Linux的网络功能相当强悍,一时之间我们无法了解所有的网络命令,在配置服务器基础环境时,先了解下网络参数设定命令. ifconfig 查询.设置网卡和 ...
- Postman-简单使用(1)
Postman-简单使用(1) Postman-简单使用 Postman-进阶使用 Postman-CI集成Jenkins Postman功能(https://www.getpostman.com/f ...
- javascript检测数组
在ECMAScript5中的数组已经引入了isArray方法,该方法的目的就是检测变量是否为数组. 但是对于ie6.7等古老的浏览器是没有这样的方法的,在Zakas写的一本书上摘到一个函数,基本能优雅 ...
- linux驱动学习_1
目前项目需要,需要做linux驱动了,记录一下 学习驱动,大家一定都会写一个hello world代码,网上也有很多范例,但是记录一下遇到的问题. 1.make之后,使用insmod加载,终端没有打印 ...
- Selenium+Python自动化之如何绕过登录验证码
一.使用Fiddler抓包 1.一般登陆网站成功后,会生成一个已登录状态的cookie,那么只需要直接把这个值拿到,用selenium进行addCookie操作即可. 2.可以先手动登录一次,然后抓取 ...
- linux部署环境配置
https://blog.csdn.net/dsczxcc/article/details/78728330
- SDK支付流程
1.普通支付流程 2.代理流程 易接.U8SDK
- ssh.sh_for_centos
#!/bin/bash sed -i 's/#PermitRootLogin yes/PermitRootLogin yes/g' /etc/ssh/sshd_config sed -i 's/#Us ...