点此看题面

大致题意: 有单点赋值、全局加法、全局乘法、全局赋值、单点求值、全局求和\(6\)种操作。现在给出操作序列,以及\(t\)对正整数\(a_i,b_i\)。让你处理\(t*q\)次操作,每次为操作序列中的第\(((a_i+jb_i)\%q+1)\)个操作。输出询问答案和。

模拟

这是一道很水的模拟题吧。

容易发现所有操作都可以\(O(1)\)搞,因此直接\(O(tq)\)暴力即可。

就是打标记比较烦。

还有\(n\)比较大可以把操作的位置离散化。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 100000
#define X 10000019
#define INF 1e9
#define MOD(x) (x=(x%X+X)%X)
#define Inc(x,y) ((x+=(y))>=X&&(x-=X))
using namespace std;
int n,q,t,dc,a[N+5],b[N+5],tx[N+5],ty[N+5],dv[N+5],Inv[X+5];
struct Op {int op,x,y;I Op(CI o=0,CI a=0,CI b=0):op(o),x(a),y(b){}} o[N+5];
class FastIO
{
private:
#define FS 100000
#define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
#define tn (x<<3)+(x<<1)
#define D isdigit(c=tc())
int f;char c,*A,*B,FI[FS];
public:
I FastIO() {A=B=FI;}
Tp I void read(Ty& x) {x=0,f=1;W(!D) f=c^'-'?1:-1;W(x=tn+(c&15),D);x*=f;}
Ts I void read(Ty& x,Ar&... y) {read(x),read(y...);}
}F;
I int XSum(CI x,CI y) {return x+y>=X?x+y-X:x+y;}
int main()
{
RI i,j,k,op,x,y;F.read(n,q),MOD(n);
for(Inv[1]=1,i=2;i^X;++i) Inv[i]=1LL*(X-1)*Inv[X%i]%X*(X/i)%X;//线性求逆元
for(i=1;i<=q;++i) F.read(op),op^6?(F.read(x),op^1?y=0:(F.read(y),0)):x=0,//读入并存储操作
o[i]=Op(op,x,y),(o[i].op==1||o[i].op==5)&&(dv[++dc]=o[i].x),//存储下操作位置
o[i].op==1&&MOD(o[i].y),o[i].op>=2&&o[i].op<=4&&MOD(o[i].x);//将值取模,便于后续操作
for(sort(dv+1,dv+dc+1),dc=unique(dv+1,dv+dc+1)-dv-1,i=1;i<=q;++i)//离散化
(o[i].op==1||o[i].op==5)&&(o[i].x=lower_bound(dv+1,dv+dc+1,o[i].x)-dv);
for(F.read(t),i=1;i<=t;++i) F.read(tx[i],ty[i]);//读入
RI ans=0,sum=0,fmul=1,fadd=0,fval=0,ftime=0;//ans统计答案,sum记录全局和,fmul记录乘法标记,fadd记录加法标记,fval记录赋值标记,ftime记录赋值时间
#define P(x) (b[x]<ftime?fval:a[x])//若单点赋值时间在全局赋值之前,采用全局赋值的值,否则采用单点赋值的值
#define GV(x) XSum(1LL*fmul*(x)%X,fadd)//求出实际值
#define IGV(x) (1LL*XSum(x,X-fadd)*Inv[fmul]%X)//求出数组中的值
for(i=1;i<=t;++i) for(j=1;j<=q;++j) switch(o[k=(tx[i]+1LL*j*ty[i]%q)%q+1].op)
{
case 1:
Inc(sum,X-GV(P(o[k].x))),Inc(sum,o[k].y),//更新sum
a[o[k].x]=IGV(o[k].y),b[o[k].x]=i*q+j;//更新数组中的值
break;
case 2:Inc(sum,1LL*o[k].x*n%X),Inc(fadd,o[k].x);break;//更新
case 3:sum=1LL*sum*o[k].x%X,fmul=1LL*fmul*o[k].x%X,fadd=1LL*fadd*o[k].x%X;break;//更新
case 4:sum=1LL*n*o[k].x%X,fmul=1,fadd=0,fval=o[k].x,ftime=i*q+j;break;//赋值,注意清空乘法和加法标记
case 5:Inc(ans,GV(P(o[k].x)));break;case 6:Inc(ans,sum);break;//求值
}return printf("%d",ans),0;
}

【洛谷5358】[SDOI2019] 快速查询(模拟)的更多相关文章

  1. [SDOI2019]快速查询——模拟

    题目链接: [SDOI2019]快速查询 对于整个序列维护一个标记$(k,b)$表示序列的每个数的真实值为$k*a_{i}+b$(注意要实时维护$k$的逆元),并记录序列的和. 对于单点修改,将$a_ ...

  2. 洛谷 P5594 【XR-4】模拟赛

    洛谷 P5594 [XR-4]模拟赛 洛谷传送门 题目描述 X 校正在进行 CSP 前的校内集训. 一共有 nn 名 OIer 参与这次集训,教练为他们精心准备了 mm 套模拟赛题. 然而,每名 OI ...

  3. [SDOI2019]快速查询

    [SDOI2019]快速查询 [题目链接] 链接 [思路要点] 据说是 \(\text{SDOI2019}\) 最水的题 操作次数为 \(1e7\) 范围,显然要求每次操作 \(\mathcal{O} ...

  4. 洛谷P3434 [POI2006]KRA-The Disks [模拟]

    题目传送门 KRA 题目描述 For his birthday present little Johnny has received from his parents a new plaything ...

  5. 【题解】洛谷P3952 [NOIP2017TG] 时间复杂度(模拟)

    题目来源:洛谷P3952 思路 纯模拟没啥可说的了 果然好复杂 参考了你谷一个40行代码 代码 #include<iostream> #include<cstdio> #inc ...

  6. luogu P5358 [SDOI2019]快速查询【模拟(?)】

    把有单点修改和查询的点离散进一个数组,然后单点修改直接改,记录一个修改时间t,维护一个sm表示这些离散的点的和,val表示出了离散点其他点的值,因为都是一样的所以只记录这一个值即可,记录ljlc为加法 ...

  7. 【洛谷】NOIP提高组模拟赛Day2【动态开节点/树状数组】【双头链表模拟】

    U41571 Agent2 题目背景 炎炎夏日还没有过去,Agent们没有一个想出去外面搞事情的.每当ENLIGHTENED总部组织活动时,人人都说有空,结果到了活动日,却一个接着一个咕咕咕了.只有不 ...

  8. 洛谷 P3955 图书管理员【模拟/思维】

    题目描述 图书馆中每本书都有一个图书编码,可以用于快速检索图书,这个图书编码是一个 正整数. 每位借书的读者手中有一个需求码,这个需求码也是一个正整数.如果一本书的图 书编码恰好以读者的需求码结尾,那 ...

  9. 洛谷P1039 侦探推理(模拟)

    侦探推理 题目描述 明明同学最近迷上了侦探漫画<柯南>并沉醉于推理游戏之中,于是他召集了一群同学玩推理游戏.游戏的内容是这样的,明明的同学们先商量好由其中的一个人充当罪犯(在明明不知情的情 ...

随机推荐

  1. 洛谷P4762 [CERC2014]Virus synthesis(回文自动机+dp)

    传送门 回文自动机的好题啊 先建一个回文自动机,然后记$dp[i]$表示转移到$i$节点代表的回文串的最少的需要次数 首先肯定2操作越多越好,经过2操作之后的串必定是一个回文串,所以最后的答案肯定是由 ...

  2. 解决LINUX下SQLPLUS时上下左右键乱码问题

    window下的sqlplus可以通过箭头键,来回看历史命令,用起来非常的方便. 但是在linux里就没有这么方面了,错了一个命令,我们必须重新敲一次,辛苦了手指头叻. 看到一个文章,很方便的一招,给 ...

  3. Unity---DOTween插件学习(2)---设置参数、Ease曲线、回调函数、动画控制函数

    目录 6.Set设置参数 7.Ease曲线 8.回调函数 9.动画控制函数 本文及系列参考于Andy老师的DOTween系列 欢迎大家关注Andy老师 6.Set设置参数 在Unity中添加一个Cub ...

  4. Age of Moyu (2018 Multi-University Training Contest 7)

    题目链接 #include <bits/stdc++.h> using namespace std; typedef long long ll; inline ll read(){ ,f= ...

  5. JMeter - 如何在多个测试环境中运行多个线程组

    概述: 作为性能测试的一部分,我不得不为我们的应用程序提供各种用例/业务工作流程的性能测试脚本.当我设计我的性能测试脚本时,我将确保我有本文中提到的可重用测试脚本. JMeter - 如何创建可重用和 ...

  6. atom快捷键

    文件切换 ctrl-shift-s 保存所有打开的文件 cmd-shift-o 打开目录 cmd-\ 显示或隐藏目录树 ctrl-0 焦点移到目录树 目录树下,使用a,m,delete来增加,修改和删 ...

  7. Hive MetaStore Upgrade

    # cd $HIVE_HOME/scripts/metastore/upgrade/mysql [Dev root @ sd-9c1f-2eac /usr/local/src/apache-hive- ...

  8. 常见的SQL错误和解决方法

    前言 今天你会看到每个人——从新手到专家——在使用SQL时犯的各种常见错误.你不能永远避免犯任何错误,但是熟悉广泛的错误将帮助你在尽可能短的时间内解决这些错误. 注:在我们的例子中我们使用的是Orac ...

  9. UIView剖析之Draw、Size、Layout方法

    一.基于UIView的Layer的方法 关于UIView的Layer,IOS提供了三个方法: 1.layoutSubviews 在iOS5.1和之前的版本,此方法的缺省实现不会做任何事情(实现为空), ...

  10. <Android 基础(四)> RecyclerView

    介绍 RecyclerView是ListView的豪华增强版.它主要包含以下几处新的特性,如ViewHolder,ItemDecorator,LayoutManager,SmothScroller以及 ...