(上不了p站我要死了,侵权度娘背锅)

Description

一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得

它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)

Input

一行两个整数N,K

Output

一行为答案。

Sample Input

3 2

Sample Output

6

HINT

【样例说明】

假设原集合为{A,B,C}

则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}

【数据说明】

对于100%的数据,1≤N≤1000000;0≤K≤N;

自己的数论果然还是太差了,看来大佬的博客才知道该怎么做

当 题目所求难以直接求得,而扩大一些的范围方便求 时,就思考用容斥定理。对于这道题,交集恰好为k的不好求,但是交集元素包含k的方便求,所以就考虑用 包含k的方案数-包含k+1的方案数+包含k+2的方案数…… 来求出 恰好包含k 的方案数。于是就将大问题拆成了相似的小问题。

交集元素个数包含i的方案数是很好求的。首先要保证一定有i个元素,所以就是“从n个元素中选i个元素”,即C(n,i)。接下来就是选择一些集合包含选出来的i个元素的方案数,该问题等价于选一些集合不包含这i个元素的方案数。即 除开这i个元素,剩下的n-i个元素组成的集合有2^(n-i)个,每个集合有选与不选两种状态,所以就是2^(2^(n-i))-1种方案。因为不能全都不选(2^(n-i)个集合中已包含空集),所以要-1。

但是却发现这样的做法连样例都过不了O^O,难道说这个方法错了吗?冷静下来仔细分析样例,按照这样的算法得出:

交集包含2个的:共9种

{{1,2}},{{1,2,3}},{{1,2},{1,2,3}}

{{1,3}},{{1,3,2}},{{1,3},{1,3,2}}

{{3,2}},{{3,2,1}},{{3,2},{3,2,1}}

交集包含3个的:共1种

{{1,2,3}}

我们发现,在“交集包含2的”的情况中,集合{1,2,3}出现了3次,包含的2个元素分别是我们选出来的{1,2},{2,3},{1,3}。所以我们算重了3次。化为一般情况就是 包含i个的 方案∗选择包含的是哪k个元素(i个元素中选k个元素),即为 C(i,k)∗C(n,i)∗(2^(2^(n-i)-1)。

加上容斥原理,令f[i]=2^(2^(n-i)-1,最终的公式为:

然后有一些缩短时间的小技巧。虽然题目的数据o(nlogn)是能过的,但是相比起来就太慢了一些,n再加一个0就完了。

而logn的复杂度主要是出在 阶乘求逆元 和 求f[i] 上。仔细观察性质,发现f[i]虽然是一个指数套指数的形式,但由于底数是2,所以可以相乘来递推(这样也就不用担心指数的快速幂的模数要取phi(mod)了)。而 阶乘的逆元是可以线性求解的(我以前一直都不知道qwq,又长见识了)。

因为 ( (n-1)! )^-1 = (n!)^-1 * n ,所以先求出阶乘,o(logn)求出 n! 的逆元,再倒着推回去。在本题总时间减少了近一半。

AC代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
#ifdef WIN32
#define RIN "%I64d"
#else
#define RIN "%lld"
#endif template <typename T>inline void read(T &res){
T k=1,x=0;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-')k=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
res=k*x;
} const int N=1000000+5;
const ll MOD=1e9+7; ll n,k,jiec[N],niy[N];
ll f[N]; void exgcd(ll a,ll b,ll &x,ll &y){
if(b==0){
x=1,y=0;
return;
}
ll x0,y0;
exgcd(b,a%b,x0,y0);
x=y0;
y=x0-(a/b)*y0;
}
ll inverse(ll a){
ll x,y;
exgcd(a,MOD,x,y);
return (x%MOD+MOD)%MOD;
}
void init(){
jiec[0]=niy[0]=1;
/*for(int i=1;i<=n;i++){
jiec[i]=jiec[i-1]*i%MOD;
niy[i]=inverse(jiec[i]);
}*/
for(int i=1;i<=n;i++) jiec[i]=jiec[i-1]*i%MOD;
niy[n]=inverse(jiec[n]);
for(int i=n-1;i>=1;i--) niy[i]=niy[i+1]*(i+1)%MOD;
}
ll power(ll a,ll b,ll mod){
ll rt=1;
for(int i=b;i;i>>=1,a=(a*a)%mod)
if(i&1) rt=(rt*a)%mod;
return rt;
}
ll F(ll x){
/*ll tmp=power(2,x,MOD-1);
return (power(2,tmp,MOD)-1+MOD)%MOD;*/
return (f[x]-1+MOD)%MOD;
}
ll C(ll a,ll b){
if(b>a) return 0;
return jiec[a]*niy[b]%MOD*niy[a-b]%MOD;
}
int main(){
read(n),read(k);
init();
f[0]=2;
for(int i=1;i<=n-k;i++) f[i]=f[i-1]*f[i-1]%MOD;
ll ans=0;
for(ll i=k;i<=n;i++)
ans=(ans+C(n,i)*C(i,k)%MOD*F(n-i)%MOD*((i-k&1)?-1:1)%MOD+MOD)%MOD;
cout<<ans<<endl;
return 0;
}

【bzoj2839】【集合计数】容斥原理+线性求阶乘逆元小技巧的更多相关文章

  1. 【BZOJ-2839】集合计数 容斥原理 + 线性推逆元 + 排列组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 229  Solved: 120[Submit][Status][Discuss] ...

  2. bzoj4591 [Shoi2015]超能粒子炮·改——组合数学(+求阶乘逆元新姿势)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4591 这题不是很裸啊(所以我就不会了) 得稍微推导一下,看这个博客好了:https://bl ...

  3. bzoj2839 集合计数 组合计数 容斥原理|题解

    集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...

  4. bzoj2839 集合计数(容斥)

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 883  Solved: 490[Submit][Status][Discuss] ...

  5. bzoj2839 集合计数(容斥+组合)

    集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出     题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...

  6. BZOJ 2839: 集合计数 [容斥原理 组合]

    2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...

  7. bzoj2839: 集合计数 容斥+组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 523  Solved: 287[Submit][Status][Discuss] ...

  8. bzoj2839 集合计数

    F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  Logout 捐赠本站 2839: 集合计数 Time ...

  9. 2019.02.09 bzoj2839: 集合计数(容斥原理)

    传送门 题意简述:对于一个有N个元素的集合在其2^N个子集中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数. 思路:考虑枚举相交的是哪kkk个,有CnkC_n^kCnk​种方案 ...

随机推荐

  1. winform-实现类似QQ停靠桌面上边缘隐藏的效果

    //实现类似QQ停靠桌面上边缘隐藏的效果! private void timer1_Tick(object sender, EventArgs e) { System.Drawing.Point pp ...

  2. 以太访solidity常用的函数有哪些

    以太坊:什么是ERC20标准? 不以规矩,不能成方圆 许多人应该都听过 代码即法律(Code Is Law),因为程序写完了,无论执行多少次都会得到同样的结果,除非有外界因素的干扰.在多人协作的过程中 ...

  3. 500 OOPS: vsftpd: refusing to run with writable anonymous root

    500 OOPS: vsftpd: refusing to run with writable anonymous root 以下就是解决的三个步骤,其中第一步,是我一直没有搞明白的,也是其中的重点: ...

  4. JavaWeb笔记(三)HTTP

    常见请求头 User-Agent:浏览器版本信息,可以解决浏览器兼容性问题 Referer:请求来源地址,可以防盗链和统计 Request 方法 获取请求方式: String getMethod() ...

  5. c#中RadioButtonList选中后不整体刷新页面保持选中状态

    c#中用asp的RadioButtonList控件总会遇到选中了,然后跟着就刷新整体页面,又变为没有选中状态. <%@ Page Language="C#" AutoEven ...

  6. Git 提交修改

    今天发现前几天的某一个提交因为忽略文件的问题而导致有几个文件没有提交,需要修改一下某个提交,研究一下可以用rebase命令来完成,执行过程模拟如下: 1. 环境搭建,版本库如下: 文件目录如下: 假设 ...

  7. POJ 3177 Redundant Paths 无向图边双联通基础题

    题意: 给一个无向图,保证任意两个点之间有两条完全不相同的路径 求至少加多少边才能实现 题解: 得先学会一波tarjan无向图 桥的定义是:删除这条边之后该图不联通 一条无向边(u,v)是桥,当且仅当 ...

  8. Three Garlands~Educational Codeforces Round 35

    C. Three Garlands time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  9. 一元多项式的表示及相加(抽象数据类型Polynomial的实现)

    // c2-6.h 抽象数据类型Polynomial的实现(见图2.45) typedef struct // 项的表示,多项式的项作为LinkList的数据元素 { float coef; // 系 ...

  10. Windows.Forms Panel 动态加载用户控件 UserControl

    创建好一个Windows Forms程序,在创建好的程序中Form1添加一个Panel控件 如图: