Tensorflow练习
# coding: utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#print("hello")
#载入数据集
mnist = input_data.read_data_sets("F:\\TensorflowProject\\MNIST_data",one_hot=True)
#每个批次的大小,训练时一次100张放入神经网络中训练
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples//batch_size
#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
#0-9十个数字
y = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32)
#创建一个神经网络
# W = tf.Variable(tf.zeros([784,10]))
# b = tf.Variable(tf.zeros([10]))
W1 = tf.Variable(tf.truncated_normal([784,2000],stddev=0.1))
b1 = tf.Variable(tf.zeros([2000])+0.1)
L1 = tf.nn.tanh(tf.matmul(x,W1)+b1)
L1_drop = tf.nn.dropout(L1,keep_prob)
#隐藏层1
W2 = tf.Variable(tf.truncated_normal([2000,2000],stddev=0.1))
b2 = tf.Variable(tf.zeros([2000])+0.1)
L2 = tf.nn.tanh(tf.matmul(L1_drop,W2)+b2)
L2_drop = tf.nn.dropout(L2,keep_prob)
#隐藏层2
W3 = tf.Variable(tf.truncated_normal([2000,1000],stddev=0.1))
b3 = tf.Variable(tf.zeros([1000])+0.1)
L3 = tf.nn.tanh(tf.matmul(L2_drop,W3)+b3)
L3_drop = tf.nn.dropout(L3,keep_prob)
W4 = tf.Variable(tf.truncated_normal([1000,10],stddev=0.1))
b4 = tf.Variable(tf.zeros([10])+0.1)
prediction = tf.nn.softmax(tf.matmul(L3_drop,W4)+b4)
#二次代价函数
#loss = tf.reduce_mean(tf.square(y-prediction))
#交叉熵
#loss = tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
#初始化变量
init = tf.global_variables_initializer()
#结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
#
with tf.Session() as sess:
sess.run(init)
for epoch in range(30):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0})
#测试准确率
test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
train_acc = sess.run(accuracy,feed_dict={x:mnist.train.images,y:mnist.train.labels,keep_prob:1.0})
print("Iter: "+str(epoch)+" ,Testing Accuracy "+str(test_acc)+" Train : "+str(train_acc))
###########################运行效果
Extracting F:\TensorflowProject\MNIST_data\train-images-idx3-ubyte.gz
Extracting F:\TensorflowProject\MNIST_data\train-labels-idx1-ubyte.gz
Extracting F:\TensorflowProject\MNIST_data\t10k-images-idx3-ubyte.gz
Extracting F:\TensorflowProject\MNIST_data\t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:From <ipython-input-6-c16fee9228bc>:44: softmax_cross_entropy_with_logits (from tensorflow.python.ops.nn_ops) is deprecated and will be removed in a future version.
Instructions for updating: Future major versions of TensorFlow will allow gradients to flow
into the labels input on backprop by default. See tf.nn.softmax_cross_entropy_with_logits_v2. Iter: 0 ,Testing Accuracy 0.9394 Train : 0.948436
Iter: 1 ,Testing Accuracy 0.9601 Train : 0.974145
Iter: 2 ,Testing Accuracy 0.9639 Train : 0.982691
Iter: 3 ,Testing Accuracy 0.965 Train : 0.9868
Iter: 4 ,Testing Accuracy 0.9691 Train : 0.988891
Iter: 5 ,Testing Accuracy 0.9698 Train : 0.9902
Iter: 6 ,Testing Accuracy 0.9692 Train : 0.9912
Iter: 7 ,Testing Accuracy 0.9706 Train : 0.991836
Iter: 8 ,Testing Accuracy 0.971 Train : 0.992291
Iter: 9 ,Testing Accuracy 0.9701 Train : 0.992818
Iter: 10 ,Testing Accuracy 0.9706 Train : 0.993073
Iter: 11 ,Testing Accuracy 0.9706 Train : 0.993236
Iter: 12 ,Testing Accuracy 0.9713 Train : 0.993491
Iter: 13 ,Testing Accuracy 0.9704 Train : 0.993782
Iter: 14 ,Testing Accuracy 0.9707 Train : 0.994036
Iter: 15 ,Testing Accuracy 0.9716 Train : 0.994236
Iter: 16 ,Testing Accuracy 0.9713 Train : 0.994509
Iter: 17 ,Testing Accuracy 0.9712 Train : 0.994691
Iter: 18 ,Testing Accuracy 0.9714 Train : 0.994891
Iter: 19 ,Testing Accuracy 0.9718 Train : 0.995055
Iter: 20 ,Testing Accuracy 0.9726 Train : 0.995236
Iter: 21 ,Testing Accuracy 0.972 Train : 0.995382
Iter: 22 ,Testing Accuracy 0.9725 Train : 0.995473
Iter: 23 ,Testing Accuracy 0.9728 Train : 0.995527
Iter: 24 ,Testing Accuracy 0.9725 Train : 0.995582
Iter: 25 ,Testing Accuracy 0.9725 Train : 0.995618
Iter: 26 ,Testing Accuracy 0.9723 Train : 0.995673
Iter: 27 ,Testing Accuracy 0.9726 Train : 0.9958
Iter: 28 ,Testing Accuracy 0.9721 Train : 0.995836
Iter: 29 ,Testing Accuracy 0.9721 Train : 0.995873
Tensorflow练习的更多相关文章
- Tensorflow 官方版教程中文版
2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源,同日,极客学院组织在线TensorFlow中文文档翻译.一个月后,30章文档全部翻译校对完成,上线并提供电子书下载,该 ...
- tensorflow学习笔记二:入门基础
TensorFlow用张量这种数据结构来表示所有的数据.用一阶张量来表示向量,如:v = [1.2, 2.3, 3.5] ,如二阶张量表示矩阵,如:m = [[1, 2, 3], [4, 5, 6], ...
- 用Tensorflow让神经网络自动创造音乐
#————————————————————————本文禁止转载,禁止用于各类讲座及ppt中,违者必究————————————————————————# 前几天看到一个有意思的分享,大意是讲如何用Ten ...
- tensorflow 一些好的blog链接和tensorflow gpu版本安装
pading :SAME,VALID 区别 http://blog.csdn.net/mao_xiao_feng/article/details/53444333 tensorflow实现的各种算法 ...
- tensorflow中的基本概念
本文是在阅读官方文档后的一些个人理解. 官方文档地址:https://www.tensorflow.org/versions/r0.12/get_started/basic_usage.html#ba ...
- kubernetes&tensorflow
谷歌内部--Borg Google Brain跑在数十万台机器上 谷歌电商商品分类深度学习模型跑在1000+台机器上 谷歌外部--Kubernetes(https://github.com/kuber ...
- tensorflow学习
tensorflow安装时遇到gcc: error trying to exec 'as': execvp: No such file or directory. 截止到2016年11月13号,源码编 ...
- 【转】TensorFlow练习20: 使用深度学习破解字符验证码
验证码是根据随机字符生成一幅图片,然后在图片中加入干扰象素,用户必须手动填入,防止有人利用机器人自动批量注册.灌水.发垃圾广告等等 . 验证码的作用是验证用户是真人还是机器人:设计理念是对人友好,对机 ...
- 【转】机器学习教程 十四-利用tensorflow做手写数字识别
模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基 ...
- 【转】Ubuntu 16.04安装配置TensorFlow GPU版本
之前摸爬滚打总是各种坑,今天参考这篇文章终于解决了,甚是鸡冻\(≧▽≦)/,电脑不知道怎么的,安装不了16.04,就安装15.10再升级到16.04 requirements: Ubuntu 16.0 ...
随机推荐
- 大数据框架对比:Hadoop、Storm、Samza、Spark和Flink——flink支持SQL,待看
简介 大数据是收集.整理.处理大容量数据集,并从中获得见解所需的非传统战略和技术的总称.虽然处理数据所需的计算能力或存储容量早已超过一台计算机的上限,但这种计算类型的普遍性.规模,以及价值在最近几年才 ...
- fabric 安装及简单使用 (centos6)
fabric 是一个python的库,fabric可以通过ssh批量管理服务器. 第一步安装依赖包 安装epel源 1 wget -O /etc/yum.repos.d/epel.repo http: ...
- 唯一id UUID
public static String getUUID() { String s = UUID.randomUUID().toString(); return s.substring(0, 8) + ...
- git 远程库 创建私钥
1.创建SSH Key.在用户主目录下,看看有没有.ssh目录,如果有,再看看这个目录下有没有id_rsa和id_rsa.pub这两个文件,如果已经有了,可直接跳到下一步.如果没有,打开Shell(W ...
- windows下matplotlib的安装
在上一篇中我想用matplotlib,无奈一直装不上,就在卸了又装装了又卸,反反复复之后,终于装好了. 初学python,首先就装了numpy,倒也没有多复杂,有需要的朋友可以直接http://sou ...
- Linux命令学习(22):ss命令
版权声明 更新:2017-05-20 博主:LuckyAlan 联系:liuwenvip163@163.com 声明:吃水不忘挖井人,转载请注明出处! 1 文章介绍 本文介绍了Linux下面的ss命令 ...
- queue容器
一.queue特性 queue是一种先进先出(first in first out,FIFO)的数据结构,它有两个口,数据元素只能从一个口进,从另一个口出.队列只允许从队尾加入元素,队头删除元素,必须 ...
- Entity Framework中AutoDetectChangesEnabled為false時更新DB方法
Entity Framework初始化時執行: Configuration.AutoDetectChangesEnabled = false; 會將數據庫變為NotTrack模式,也就是不會自動同步对 ...
- BZOJ2096:[POI2010]Pilots
浅谈队列:https://www.cnblogs.com/AKMer/p/10314965.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php?i ...
- Installing Redis more properly
Installing Redis more properly Running Redis from the command line is fine just to hack a bit with i ...