Redundant Paths

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.

Given a descri_ption of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.

There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

Input

Line 1: Two space-separated integers: F and R

Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

Output

Line 1: A single integer that is the number of new paths that must be built.

Sample Input

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output

2

Hint

Explanation of the sample:

One visualization of the paths is:

1   2   3
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +

Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.

1   2   3
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -

Check some of the routes: 
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2 
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4 
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7 
Every pair of fields is, in fact, connected by two routes.

It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

题目大意:有n个草场,m条无向边。问让图形成边双连通图需要最少新建多少条无向边。图中给的有重边。

解题思路:我们可以先画出缩点后的图,这时已经成了一棵树。那么我们可以看出,要想形成边双连通图,需要没有桥,所以,只要将叶子结点连一条边即可。记叶子个数为leaf。所以需要新建的边即为(leaf+1)/2。

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<vector>
#include<stack>
using namespace std;
const int maxn = 5100;
struct Edge{
int from,to,dist,next;
Edge(){}
Edge(int _to,int _next):to(_to),next(_next){}
}edges[maxn*4]; //无向图的边
int head[maxn], tot; //邻接表
int dfs_clock, dfn[maxn]; //时间戳
//Stack:存放边双连通节点、instack:在栈中、ebccno:节点所在分量编号、ebcc_cnt分量数目(从1开始编号)
int Stack[maxn], instack[maxn], top, ebccno[maxn], ebcc_cnt;
int deg[maxn];//记录缩点的度
void init(){
tot = 0;
dfs_clock = 0;
top = 0;
ebcc_cnt = 0;
memset(deg,0,sizeof(deg));
memset(head,-1,sizeof(head));
}
void AddEdge(int _u,int _v){
edges[tot] = Edge(_v,head[_u]);
head[_u] = tot++;
}
int dfs(int u,int fa){ //这里的fa是记录的边的编号,用来处理重边
int lowu = dfn[u] = ++dfs_clock;
Stack[++top] = u; //将每个访问的结点放入栈中
// instack[u] = 1;
for(int i = head[u]; i != -1; i = edges[i].next){
int v = edges[i].to;
if(!dfn[v]){ //如果v没有访问过
int lowv = dfs(v,i); //v及v的后代能访问到的最远祖先
lowu = min(lowu,lowv); //用后代来更新lowu
//如果v已经在栈中了,并且这条边不是回边(一条无向边,拆成了有向边,回指了父亲的这条有向边)
}else if(dfn[v] < dfn[u] && (fa^1) != i){ //有人在这里用instack[v]替代了判断已经在栈中
lowu = min(lowu,dfn[v]); //用反向边更新lowu
}
}
if(dfn[u] == lowu){ //找到一个边双连通分量
ebcc_cnt++;
for(;;){
int v = Stack[top--];
// instack[v] = 0;
ebccno[v] = ebcc_cnt; //把节点划分到分量中
if(u == v){
break;
}
}
}
// low[u] = lowu;
return lowu;
}
void find_ebcc(int n){
memset(dfn,0,sizeof(dfn));
memset(instack,0,sizeof(instack));
for(int i = 1; i <= n; i++){
if(!dfn[i]){
dfs(i,-1);
}
}
}
int main(){
int n,m;
while(scanf("%d%d",&n,&m)!=EOF){
init();
int a,b;
for(int i = 0; i < m; i++){
scanf("%d%d",&a,&b);
AddEdge(a,b);
AddEdge(b,a);
}
find_ebcc(n);
for(int i = 1; i <= n; i++){
for(int j = head[i]; j != -1; j = edges[j].next){
int v = edges[j].to;
if(ebccno[i] != ebccno[v]){
deg[ebccno[v]]++;
}
}
}
int leaf = 0;
for(int i = 1; i <= ebcc_cnt; i++){
if(deg[i] == 1){
leaf++;
}
}
printf("%d\n",(leaf+1)/2);
}
return 0;
}

  

POJ 3177——Redundant Paths——————【加边形成边双连通图】的更多相关文章

  1. POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)

    POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...

  2. tarjan算法求桥双连通分量 POJ 3177 Redundant Paths

    POJ 3177 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12598   Accept ...

  3. POJ 3177 Redundant Paths(边双连通的构造)

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13717   Accepted: 5824 ...

  4. [双连通分量] POJ 3177 Redundant Paths

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13712   Accepted: 5821 ...

  5. poj 3177 Redundant Paths

    题目链接:http://poj.org/problem?id=3177 边双连通问题,与点双连通还是有区别的!!! 题意是给你一个图(本来是连通的),问你需要加多少边,使任意两点间,都有两条边不重复的 ...

  6. POJ 3177 Redundant Paths POJ 3352 Road Construction

    这两题是一样的,代码完全一样. 就是给了一个连通图,问加多少条边可以变成边双连通. 去掉桥,其余的连通分支就是边双连通分支了.一个有桥的连通图要变成边双连通图的话,把双连通子图收缩为一个点,形成一颗树 ...

  7. POJ 3177 Redundant Paths(强连通分量)

    题目链接:http://poj.org/problem?id=3177 题目大意是一个无向图给你n个点m条边,让你求出最少加多少条边 可以让任意两个点相通两条及以上的路线(每条路线点可以重复,但是每条 ...

  8. POJ - 3177 Redundant Paths(边双连通分支)(模板)

    1.给定一个连通的无向图G,至少要添加几条边,才能使其变为双连通图. 2. 3. //边双连通分支 /* 去掉桥,其余的连通分支就是边双连通分支了.一个有桥的连通图要变成边双连通图的话, 把双连通子图 ...

  9. poj 3177 Redundant Paths【求最少添加多少条边可以使图变成双连通图】【缩点后求入度为1的点个数】

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11047   Accepted: 4725 ...

随机推荐

  1. 删除表中重复id值

    DELETE t FROM (SELECT *,ROW_NUMBER()OVER(PARTITION BY test1,test2,test3,test4 ORDER BY RAND()) AS RN ...

  2. nginx添加缓存以及判断是否缓存生效

    location ~.*\.(js|css|html|png|jpg|gif)$ { expires 3d; } expires    3d; //表示缓存3天 expires    3h; //表示 ...

  3. 基于vue框架项目开发过程中遇到的问题总结(一)

    (一)关于computed修改data里变量的值 问题:computed里是不能直接修改data里变量的值,否则在git commit 时会报错 解决:在computed里使用get和set来进行获取 ...

  4. C#引号中用@报错

    如SQL = " INSERT INTO A SELECT * FROM B@DBLINK "会报“Parameter '@DBLINK' specified but none o ...

  5. group by 两个或以上条件的分析

    首先group by 的简单说明: group by 一般和聚合函数一起使用才有意义,比如 count sum avg等,使用group by的两个要素:   (1) 出现在select后面的字段 要 ...

  6. loj#6485. LJJ 学二项式定理(单位根反演)

    题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\ ...

  7. SP34096 DIVCNTK - Counting Divisors (general)(Min_25筛)

    题面 洛谷 \(\sigma_0(i)\) 表示\(i\) 的约数个数 求\(S_k(n)=\sum_{i=1}^n\sigma_0(i^k)\mod 2^{64}\) 多测,\(T\le10^4,n ...

  8. vue_cli下开发一个简单的模块权限系统之实现登录

    因为我们需要和后端数据交互,所以我们需要安装axios,安装好以后在main.js引入 v-model是标识空间,v-on:click="doLogin"是登录事件 doLogin ...

  9. Expression #1 of SELECT list is not in GROUP BY clause and contains nonaggre

    原文链接:https://blog.csdn.net/hq091117/article/details/79065199 https://blog.csdn.net/allen_tsang/artic ...

  10. EF core 学习 执行原生sql语句 之ExecuteReader 和ExecuteScalar

    通过ef core 源码分析 Microsoft.EntityFrameworkCore.Storage.RelationalCommandExtensions类中有相应的方法 为此得到相应的结果: ...