Cover

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1027    Accepted Submission(s): 351
Special Judge

Problem Description
You have an n∗n matrix.Every grid has a color.Now there are two types of operating:
L x y: for(int i=1;i<=n;i++)color[i][x]=y;
H x y:for(int i=1;i<=n;i++)color[x][i]=y;
Now give you the initial matrix and the goal matrix.There are m operatings.Put in order to arrange operatings,so that the initial matrix will be the goal matrix after doing these operatings

It's guaranteed that there exists solution.

 
Input
There are multiple test cases,first line has an integer T
For each case:
First line has two integer n,m
Then n lines,every line has n integers,describe the initial matrix
Then n lines,every line has n integers,describe the goal matrix
Then m lines,every line describe an operating

1≤color[i][j]≤n
T=5
1≤n≤100
1≤m≤500

 
Output
For each case,print a line include m integers.The i-th integer x show that the rank of x-th operating is i
 
Sample Input
1
3 5
2 2 1
2 3 3
2 1 3  
3 3 3
3 3 3
3 3 3
H 2 3
L 2 2
H 3 3
H 1 3
L 2 3
 
Sample Output
5 2 4 3 1
 

题目大意:给你一个n*n的矩阵,给你初始矩阵和目标矩阵,然后有m个操作。H x z表示将第x行覆盖为z,L x z表示将第x列覆盖为z,保证是有解。问你这m个操作怎么排,可以让初始矩阵变为目标矩阵。

解题思路:遍历m个操作,如果是行操作,就看该行是否都是所要染的颜色或着是0颜色,如果这一行跟要染的颜色一样,那么就存起来操作,同时把该行全部变为0,。由于不是一次下来就能得到结果,所以用一个变量记录已经有多少个操作已经在结果中,最后逆序输出即为答案。

#include<bits/stdc++.h>
using namespace std;
struct Oper{
int r_,x,col;
}opers[550];
int Map[125][125],ans[550],vis[550];
int main(){
int t,a,n,m;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
scanf("%d",&a);
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
scanf("%d",&Map[i][j]);
}
}
int a,b;
char str[20];
for(int i=1;i<=m;i++){
scanf("%s%d%d",str,&a,&b);
if(str[0]=='H'){
opers[i].r_=1;
opers[i].x=a;
opers[i].col=b;
}else{
opers[i].r_=0;
opers[i].x=a;
opers[i].col=b;
}
}
memset(vis,0,sizeof(vis));
int cnt=0;
while(cnt<m){
for(int i=1;i<=m;i++){
if(!vis[i]){
if(opers[i].r_==1){
int r=opers[i].x,aim=opers[i].col;
int j;
for(j=1;j<=n;j++){
if(Map[r][j]!=aim&&Map[r][j]!=0){
break;
}
}
if(j==n+1){
for(j = 1;j<=n;j++){
Map[r][j]=0;
}
ans[cnt]=i;
cnt++;
vis[i]=1;
}
}else{
int c=opers[i].x,aim=opers[i].col;
int j;
for(j=1;j<=n;j++){
if(Map[j][c]!=aim&&Map[j][c]!=0){
break;
}
}
if(j==n+1){
for(j = 1;j<=n;j++){
Map[j][c]=0;
}
ans[cnt]=i;
cnt++;
vis[i]=1;
}
}
}
}
}
printf("%d",ans[cnt-1]);
for(int i=cnt-2;i>=0;i--){
printf(" %d",ans[i]);
}printf("\n");
}
return 0;
}

  

 

HDU——Cover——————【技巧】的更多相关文章

  1. hdu 5265 技巧题 O(nlogn)求n个数中两数相加取模的最大值

    pog loves szh II Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  2. HDU 4509 湫湫系列故事——减肥记II(线段树-区间覆盖 或者 暴力技巧)

    http://acm.hdu.edu.cn/showproblem.php?pid=4509 题目大意: 中文意义,应该能懂. 解题思路: 因为题目给的时间是一天24小时,而且还有分钟.为了解题方便, ...

  3. HDU 5895 Mathematician QSC(矩阵乘法+循环节降幂+除法取模小技巧+快速幂)

    传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/detai ...

  4. hdu 4864 Task (贪心 技巧)

    题目链接 一道很有技巧的贪心题目. 题意:有n个机器,m个任务.每个机器至多能完成一个任务.对于每个机器,有一个最大运行时间xi和等级yi, 对于每个任务,也有一个运行时间xj和等级yj.只有当xi& ...

  5. HDU 6311 Cover (无向图最小路径覆盖)

    HDU 6311 Cover (无向图最小路径覆盖) Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/ ...

  6. HDU 5884 Sort(二分答案+计算WPL的技巧)

    Sort Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  7. hdu 5386 Cover (暴力)

    hdu 5386 Cover Description You have an matrix.Every grid has a color.Now there are two types of oper ...

  8. HDU 6150 - Vertex Cover | 2017 中国大学生程序设计竞赛 - 网络选拔赛

    思路来自 ICPCCamp /* HDU 6150 - Vertex Cover [ 构造 ] | 2017 中国大学生程序设计竞赛 - 网络选拔赛 题意: 给了你一个贪心法找最小覆盖的算法,构造一组 ...

  9. HDU -2674 N!Again(小技巧)

    这道题有个小技巧,就是既然是n!,那么对2009求余,只要大于2009!,那么一定是0,在仔细想想会发现,根本到不了2009,只要到2009的最大质因数就行了,为什么呢?因为最大质因数是最大的一个不能 ...

随机推荐

  1. javaweb访问hdfs的一些错误

    javaweb 与 HDFS 坑 前提:javaweb 项目,hdfs中的数据文件,导入访问hdfs的jar包,eclipse调试 问题:在×××.java代码中正常访问hdfs,浏览jsp时调用×× ...

  2. J2SE-鸡汤

    前言 终于开始学java了,心里免不了的开心,总是听老乡说他们公司搞java开发,用的什么什么框架,说的自己都有点眼馋了,但是根据自己的性格,不了解它,肯定不会就去用它的.所以在学习框架之前,java ...

  3. MongoDB初识篇

    前言 一直听说MongonDB,却没有机会接触它,于是决定先从表面上认识它.MongoDB(分布式文档存储数据库)是一种介于关系型数据库和非关系型数据库之间的数据库,而且它是非关系数据库中最像关系型数 ...

  4. windows 注册表

    注册表(Registry,繁体中文版Windows称之为登录)是Microsoft Windows中的一个重要的数据库,用于存储系统和应用程序的设置信息.早在Windows 3.0推出OLE技术的时候 ...

  5. JavaScript——原生js实现瀑布流

    瀑布流介绍及实现原理: 瀑布流是一种页面布局,页面上也有多等宽的块(块就页面内容),每一块都是绝对定位(absolute),每个块排列的方式如下:寻找现在高度最小的列,把该块定位到该列下方.需要知道, ...

  6. Buy or Build UVA - 1151 Kruskal+枚举

    题意: 大概意思是有 n 个点,现在有 q 个方案 ,第 i 个方案耗费为 ci ,使 Ni 个点联通 ,当然也可以直接使两点联通 ,现求最小生成树的代价. 两点直接联通的代价是欧几里得距离的平方: ...

  7. LOJ2565 SDOI2018 旧试题 莫比乌斯反演、三元环计数

    传送门 这道题的思路似乎可以给很多同时枚举三个量的反演题目提供一个很好的启发-- 首先有结论:\(d(ijk) = \sum\limits_{x|i}\sum\limits_{y|j}\sum\lim ...

  8. Qt 学习之路 2(7):MainWindow 简介

    Qt 学习之路 2(7):MainWindow 简介  豆子  2012年8月29日  Qt 学习之路 2  29条评论 前面一篇大致介绍了 Qt 各个模块的相关内容,目的是对 Qt 框架有一个高屋建 ...

  9. 项目笔记《DeepLung:Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification》(三)(上)结果评估

    在(一)中,我将肺结节检测项目总结为三阶段,这里我要讲讲这个项目的第三阶段,至于第二阶段,由于数据增强部分的代码我始终看不大懂,先不讲. 结果评估的程序在evaluationScript文件夹下,这个 ...

  10. Linux软件源apt 仓库 包 的概念

    概念介绍: 软件源是debian系的概念,把软件放在一个pool里面,用一条命令就可以自动从指定服务器下载并安装. 源列表是/etc/apt/sources.list,里面写了你所用的服务器地址 (其 ...