1087. All Roads Lead to Rome (30)

时间限制
200 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

Indeed there are many different tourist routes from our city to Rome. You are supposed to find your clients the route with the least cost while gaining the most happiness.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers N (2<=N<=200), the number of cities, and K, the total number of routes between pairs of cities; followed by the name of the starting city. The next N-1 lines each gives the name of a city and an integer that represents the happiness one can gain from that city, except the starting city. Then K lines follow, each describes a route between two cities in the format "City1 City2 Cost". Here the name of a city is a string of 3 capital English letters, and the destination is always ROM which represents Rome.

Output Specification:

For each test case, we are supposed to find the route with the least cost. If such a route is not unique, the one with the maximum happiness will be recommended. If such a route is still not unique, then we output the one with the maximum average happiness -- it is guaranteed by the judge that such a solution exists and is unique.

Hence in the first line of output, you must print 4 numbers: the number of different routes with the least cost, the cost, the happiness, and the average happiness (take the integer part only) of the recommended route. Then in the next line, you are supposed to print the route in the format "City1->City2->...->ROM".

Sample Input:

6 7 HZH
ROM 100
PKN 40
GDN 55
PRS 95
BLN 80
ROM GDN 1
BLN ROM 1
HZH PKN 1
PRS ROM 2
BLN HZH 2
PKN GDN 1
HZH PRS 1

Sample Output:

3 3 195 97
HZH->PRS->ROM

提交代码

pat中类似的题目做得比较多,现在总结一下:

1.最大和初始距离为-1。这个条件不管是dis[],还是mindis,在使用Dijstra的时候,更新邻边当前最短路和求当前最短路的点的时候要注意,边不可到初始点的点先剔除。

2.对比string要比对比int慢很多,所要转换映射。

3.相邻点的数学关系要分析清楚。

4.最好加vis,可以更清晰。

5.初始点的初始化不要忘记!!

 #include<cstdio>
#include<cstring>
#include<stack>
#include<algorithm>
#include<iostream>
#include<stack>
#include<set>
#include<map>
#include<vector>
using namespace std;
map<string,int> city;//string-int
map<int,string> rcity;
map<int,vector<pair<int,int> > > edge;
int dis[],path[],hcount[],happ[],fstep[],f[];
bool vis[];
int main()
{
//freopen("D:\\INPUT.txt","r",stdin);
int n,k,i,d,s;
string st,u,v;
scanf("%d %d",&n,&k);
memset(dis,-,sizeof(dis));//每个点的最短路长
memset(hcount,-,sizeof(hcount));//幸福指数之和
memset(vis,false,sizeof(vis));//是否计算过最短路径
memset(path,,sizeof(path));//前一个点
memset(fstep,,sizeof(fstep));//到这个点需要几步
cin>>st;//起始城市
city[st]=;//编号
rcity[]=st;//反编号
happ[]=;
dis[]=;
hcount[]=;
fstep[]=;
path[]=;//init
f[]=;
for(i=; i<n; i++)
{
f[i]=i;
cin>>u;
rcity[i]=u;
city[u]=i;
scanf("%d",&happ[i]);
} /*for(i=0;i<n;i++){
cout<<rcity[i]<<endl;
}*/ for(i=; i<k; i++)
{
cin>>u>>v;
scanf("%d",&d);
//cout<<u<<" "<<v<<" "<<d<<endl;
edge[city[u]].push_back(make_pair(city[v],d)); edge[city[v]].push_back(make_pair(city[u],d));
} /*for(i=0;i<n;i++){
vector<pair<int,int> >::iterator it;
cout<<"i: "<<i<<endl;
for(it=edge[i].begin(); it!=edge[i].end(); it++){
cout<<it->first<<" "<<it->second<<endl;
}
}*/ s=;
vector<pair<int,int> >::iterator it;
int next;
while(s!=city["ROM"])
{ //cout<<"s: "<<s<<endl; vis[s]=true;
for(it=edge[s].begin(); it!=edge[s].end(); it++) //update
{
next=it->first;
if(dis[next]==-||dis[next]>dis[s]+it->second)
{
dis[next]=dis[s]+it->second;
hcount[next]=hcount[s]+happ[next];
path[next]=path[s];
fstep[next]=fstep[s]+;
f[next]=s;
}
else
{
if(dis[next]==dis[s]+it->second)
{
path[next]+=path[s];//
if(hcount[next]<hcount[s]+happ[next])
{
hcount[next]=hcount[s]+happ[next];
fstep[next]=fstep[s]+;
f[next]=s;
}
else
{
if(hcount[next]==hcount[s]+happ[next])
{
if(fstep[next]>fstep[s]+)
{
fstep[next]=fstep[s]+;
f[next]=s;
}
}
}
}
}
} /*for(i=1;i<n;i++){
cout<<"i: "<<i<<" "<<dis[i]<<endl;
}*/ int mindis=-,minnum;
for(i=;i<n;i++)//find the min
{
if(dis[i]==-){//如果当前边到不了初始点,直接pass
continue;
}
if(!vis[i]&&(mindis==-||(dis[i]<mindis))){
//cout<<"ii: "<<i<<" "<<dis[i]<<endl;
mindis=dis[i];
minnum=i;
}
} //cout<<"minnum: "<<minnum<<" "<<dis[minnum]<<endl; s=minnum;
}
printf("%d %d %d %d\n",path[s],dis[s],hcount[s],hcount[s]/fstep[s]);
int p=s;
stack<int> ss;
while(p){
ss.push(p);
p=f[p];
}
cout<<rcity[p];
while(!ss.empty()){
cout<<"->"<<rcity[ss.top()];
ss.pop();
}
cout<<endl;
return ;
}

pat1087. All Roads Lead to Rome (30)的更多相关文章

  1. [图的遍历&多标准] 1087. All Roads Lead to Rome (30)

    1087. All Roads Lead to Rome (30) Indeed there are many different tourist routes from our city to Ro ...

  2. PAT1087. All Roads Lead to Rome

    PAT1087. All Roads Lead to Rome 题目大意 给定一个图的边权和点权, 求边权最小的路径; 若边权相同, 求点权最大; 若点权相同, 则求平均点权最大. 思路 先通过 Di ...

  3. 1087. All Roads Lead to Rome (30)

    时间限制 200 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Indeed there are many different ...

  4. 1087 All Roads Lead to Rome (30)(30 分)

    Indeed there are many different tourist routes from our city to Rome. You are supposed to find your ...

  5. PAT甲级练习 1087 All Roads Lead to Rome (30分) 字符串hash + dijkstra

    题目分析: 这题我在写的时候在PTA提交能过但是在牛客网就WA了一个点,先写一下思路留个坑 这题的简单来说就是需要找一条最短路->最开心->点最少(平均幸福指数自然就高了),由于本题给出的 ...

  6. PAT (Advanced Level) 1087. All Roads Lead to Rome (30)

    暴力DFS. #include<cstdio> #include<cstring> #include<cmath> #include<vector> # ...

  7. 【PAT甲级】1087 All Roads Lead to Rome (30 分)(dijkstra+dfs或dijkstra+记录路径)

    题意: 输入两个正整数N和K(2<=N<=200),代表城市的数量和道路的数量.接着输入起点城市的名称(所有城市的名字均用三个大写字母表示),接着输入N-1行每行包括一个城市的名字和到达该 ...

  8. PAT 1087 All Roads Lead to Rome[图论][迪杰斯特拉+dfs]

    1087 All Roads Lead to Rome (30)(30 分) Indeed there are many different tourist routes from our city ...

  9. PAT_A1087#All Roads Lead to Rome

    Source: PAT A1087 All Roads Lead to Rome (30 分) Description: Indeed there are many different tourist ...

随机推荐

  1. WPARAM和LPARAM的含义

    lParam 和 wParam 是宏定义,一般在消息函数中带这两个类型的参数,通常用来存储窗口消息的参数. LRESULT CALLBACK WindowProc(HWND hwnd, UINT uM ...

  2. C#之WinForm界面分辨率问题

    在做上一个C#小工具的时候,当时为了处理界面最大化,分辨率问题,只是简单的用各种···Panle控价简单随意的处理控件的大小位置,字体什么的就随缘了(貌似有点不负责任啊,嘿嘿~). 所以在开始第二个C ...

  3. [poj 2456] Aggressive cows 二分

    Description Farmer John has built a new long barn, with N (2 <= N <= 100,000) stalls. The stal ...

  4. 解释器模式Interpreter详解

    原文链接:https://www.cnblogs.com/java-my-life/archive/2012/06/19/2552617.html 在阎宏博士的<JAVA与模式>一书中开头 ...

  5. P1959 遗址_NOI导刊2009普及(6)

    题意:平面上n个点(坐标$0\le x,y\le 5000,n \le 3000$) 求以其中四个点为顶点的正方形的最大面积 $O(n^2)$枚举两个点作为当前正方形的对角线 那么如何求出另外两个点呢 ...

  6. Leetcode 283. Move Zeroes 移动数组中的零 (数组,模拟)

    题目描述 已知数组nums,写一个函数将nums中的0移动到数组后面,同时保持非零元素的相对位置不变.比如已知nums=[0,1,0,3,12],调用你写的函数后nums应该是[1,3,12,0,0] ...

  7. 洛谷 P2982 [USACO10FEB]慢下来Slowing down

    题目描述 Every day each of Farmer John's N (1 <= N <= 100,000) cows conveniently numbered 1..N mov ...

  8. Java 实现栈,队列

    package base.structure; /** * @program: Algorithm4J * @description: 实现一个Stack * @author: Mr.Dai * @c ...

  9. 如何从GAC中复制DLL文件

    运行执行:c:\Windows\assembly\gac_msil

  10. git学习中遇到的疑难杂症

    GIT仓库如何恢复到前一次提交 一.通过使用Git版本恢复命令reset,可以回退版本 reset命令有3种方式: 1.git   reset   –mixed:此为默认方式,不带任何参数的git r ...