题目背景

\(Roy\)和\(October\)两人在玩一个取石子的游戏。

题目描述

游戏规则是这样的:共有\(n\)个石子,两人每次都只能取\(p^k\)个(\(p\)为质数,\(k\)为自然数,且\(p^k\)小于等于当前剩余石子数),谁取走最后一个石子,谁就赢了。

现在\(October\)先取,问她有没有必胜策略。

若她有必胜策略,输出一行"\(October wins!\)";否则输出一行"\(Roy wins!\)"。

输入输出格式

输入格式:

第一行一个正整数T,表示测试点组数。

第\(2\)行~第\((T+1)\)行,一行一个正整数\(n\),表示石子个数。

输出格式:

\(T\)行,每行分别为"\(October wins!\)"或"\(Roy wins!\)"。

输入输出样例

输入样例#1:

3
4
9
14

输出样例#1:

October wins!
October wins!
October wins!

说明

对于\(30\%\)的数据,\(1<=n<=30\);

对于\(60\%\)的数据,\(1<=n<=1,000,000\);

对于\(100\%\)的数据,\(1<=n<=50,000,000,1<=T<=100,000\)。

(改编题)

思路:被洛谷标签给骗了,不知道为什么这道题的标签是\(prim\),本来是想练最小生成树,看数据范围,根本不可做,而且……也没法建边啊,洛谷标签真的是……不过点进来了,就做做吧,发现这其实就是个打表题,如果输入的\(n\)模\(6\)值为\(0\),就是先手必败态,否则为先手必胜态。

代码:

#include<cstdio>
using namespace std;
int t,n;
int main() {
scanf("%d",&t);
while(t--) {
scanf("%d",&n);
if(n%6) printf("October wins!\n");
else printf("Roy wins!\n");
}
return 0;
}

洛谷P4018 Roy&October之取石子的更多相关文章

  1. 洛谷 P4018 Roy&October之取石子

    洛谷 P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质 ...

  2. 洛谷——P4018 Roy&October之取石子

    P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取p^kpk个(p为质数,k为自 ...

  3. 洛谷P4018 Roy&October之取石子 题解 博弈论

    题目链接:https://www.luogu.org/problem/P4018 首先碰到这道题目还是没有思路,于是寻思还是枚举找一找规律. 然后写了一下代码: #include <bits/s ...

  4. 洛谷P4860 Roy&October之取石子II 题解 博弈论

    题目链接:https://www.luogu.org/problem/P4860 和<P4018 Roy&October之取石子>一样的推导思路,去找循环节. 可以发现:只要不能被 ...

  5. P4018 Roy&October之取石子

    题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质数,k为自然数,且 p^kpk 小于等于当前剩余石子数), ...

  6. luogu P4018 Roy&October之取石子(博弈论)

    题意 题解 如果n是6的倍数,先手必败,否则先手必胜. 因为6*x一定不是pk 所以取得话会变成6*y+a的形式a=1,2,3,4,5: 然后a一定为质数.我们把a取完就又成为了6*x的形式. 又因为 ...

  7. 洛谷 Roy&October之取石子

    题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取pk 个(p为质数,k为自然数,且pk小于等于当前剩余石子数),谁取走最后一个石子 ...

  8. [luogu4018][Roy&October之取石子]

    题目链接 思路 这个题思路挺巧妙的. 情况一: 首先如果这堆石子的数量是1~5,那么肯定是先手赢.因为先手可以直接拿走这些石子.如果石子数量恰好是6,那么肯定是后手赢.因为先手无论怎样拿也无法直接拿走 ...

  9. [luogu4860][Roy&October之取石子II]

    题目链接 思路 这个题和上个题类似,仔细推一下就知道这个题是判断是否是4的倍数 代码 #include<cstdio> #include<iostream> #define f ...

随机推荐

  1. codeforces 622C C. Not Equal on a Segment

    C. Not Equal on a Segment time limit per test 1 second memory limit per test 256 megabytes input sta ...

  2. HIVE SQL JOIN

    最近总结了一下hive表关联的用法,与Postgres表关联还是有细微差别,总结在这里方便以后查看. join语法 join_table: table_reference [INNER] JOIN t ...

  3. [HDU5290]Bombing plan

    vjudge sol 树DP. 首先把模型转换成:每个点可以控制与它距离不超过\(w_i\)的点,先要求选出数量最少的点控制所有点. 设\(f[i][-100...100]\)表示\(i\)号点向上还 ...

  4. ACM学习历程—BestCoder Round #75

    1001:King's Cake(数论) http://acm.hdu.edu.cn/showproblem.php?pid=5640 这题有点辗转相除的意思.基本没有什么坑点. 代码: #inclu ...

  5. bzoj 3533: [Sdoi2014]向量集 线段树维护凸包

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3533 题解: 首先我们把这些向量都平移到原点.这样我们就发现: 对于每次询问所得到的an ...

  6. 【LeetCode】010. Regular Expression Matching

    Implement regular expression matching with support for '.' and '*'. '.' Matches any single character ...

  7. python 3中使用getattr和*args时, 出现传入参数不一致的问题

    今天在用python3的getattr时遇到一个问题, 就是老提示传入参数和函数前面不一致, 代码为: class Test:      def __init__(self, name):       ...

  8. IDEA常用快捷键整理

    快速定位文件:   Ctrl+E,最近的文件 Ctrl+Shift+E,最近更改的文件 Alt+Shift+C,最近打开的文件 Ctrl+N,快速打开类 Ctrl+Shift+N,快速打开文件   当 ...

  9. Myeclipse如何使用Maven添加jar包

    很多新手都不知道如何在maven项目里添加jar包. 以前我还没接触maven的时候下载过一个demo,是maven项目. 我居然是照着他的pom.xml文件一个一个的写!!! 很多人认为理所当然的东 ...

  10. bzoj4545

    lct+SAM bzoj4516+bzoj2555 这道题唯一的用处就是教会了我真正的广义SAM dfs时保留当前节点在后缀自动机中的位置,每个点接着父亲建 lct动态维护right集合大小,用lct ...