[洛谷P4725]【模板】多项式对数函数
题目大意:给出$n-1$次多项式$A(x)$,求一个 $\bmod{x^n}$下的多项式$B(x)$,满足$B(x) \equiv \ln A(x)$。在$\bmod{998244353}$下进行。保证$A[0]=1$
题解:
$$
B(x)=\ln A(x)\\
B'(x)=\dfrac{A'(x)}{A(x)}\\
B(x)=\int\dfrac{A'(x)}{A(x)}\mathrm{dx}
$$
卡点:无
C++ Code:
#include <cstdio>
#include <algorithm>
#define maxn 262144 + 10
const int mod = 998244353, G = 3;
int n;
int g[maxn], f[maxn];
inline int pw(int base, long long p) {
p %= mod - 1, base %= mod;
int res = 1;
for (; p; p >>= 1, base = 1ll * base * base % mod) if (p & 1) res = 1ll * res * base % mod;
return res;
}
inline int INV(int x) {
return pw(x, mod - 2);
}
namespace Polynomial {
int lim, ilim, s, rev[maxn];
int C[maxn], Wn[maxn];
inline void init(int n) {
s = -1, lim = 1; while (lim < n) lim <<= 1, s++;
ilim = ::INV(lim);
for (int i = 1; i < lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << s);
int tmp = pw(G, (mod - 1) / lim);
Wn[0] = 1; for (int i = 1; i <= lim; i++) Wn[i] = 1ll * Wn[i - 1] * tmp % mod;
}
inline void up(int &a, int b) {if ((a += b) >= mod) a -= mod;}
inline void NTT(int *A, int op) {
for (int i = 0; i < lim; i++) if (i < rev[i]) std::swap(A[i], A[rev[i]]);
for (int mid = 1; mid < lim; mid <<= 1) {
int t = lim / mid >> 1;
for (int i = 0; i < lim; i += (mid << 1)) {
for (int j = 0; j < mid; j++) {
int W = op ? Wn[t * j] : Wn[lim - t * j];
int X = A[i + j], Y = 1ll * W * A[i + j + mid] % mod;
up(A[i + j], Y), up(A[i + j + mid] = X, mod - Y);
}
}
}
if (!op) for (int i = 0; i < lim; i++) A[i] = 1ll * A[i] * ilim % mod;
}
void INV(int *A, int *B, int n) {
if (n == 1) {B[0] = ::INV(A[0]); return ;}
INV(A, B, n + 1 >> 1), init(n << 1);
for (int i = 0; i < n; i++) C[i] = A[i];
for (int i = n; i < lim; i++) C[i] = B[i] = 0;
NTT(B, 1), NTT(C, 1);
for (int i = 0; i < lim; i++) B[i] = (2 + mod - 1ll * B[i] * C[i] % mod) * B[i] % mod;
NTT(B, 0);
for (int i = n; i < lim; i++) B[i] = 0;
}
inline void DER(int *A, int *B, int n) {
B[n] = 0; for (int i = 1; i < n; i++) B[i - 1] = 1ll * A[i] * i % mod;
}
inline void INT(int *A, int *B, int n) {
B[0] = 0; for (int i = 1; i < n; i++) B[i] = 1ll * A[i - 1] * ::INV(i) % mod;
} int D[maxn];
inline void LN(int *A, int *B, int len) {
DER(A, B, len);
INV(A, D, len);
init(n << 1);
NTT(B, 1), NTT(D, 1);
for (int i = 0; i < lim; i++) D[i] = 1ll * B[i] * D[i] % mod;
NTT(D, 0);
INT(D, B, len);
for (int i = len; i < lim; i++) B[i] = 0;
}
}
int main() {
scanf("%d", &n);
for (int i = 0; i < n; i++) scanf("%d", &g[i]);
Polynomial::LN(g, f, n);
for (int i = 0; i < n; i++) printf("%d ", f[i]); puts("");
return 0;
}
[洛谷P4725]【模板】多项式对数函数的更多相关文章
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- 洛谷.4512.[模板]多项式除法(NTT)
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...
- 洛谷.4238.[模板]多项式求逆(NTT)
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...
- 2019.01.01洛谷 P4725/P4726 多项式对数/指数函数(牛顿迭代)
4725传送门 4726传送门 解析 代码: #include<bits/stdc++.h> #define ri register int using namespace std; in ...
- 洛谷 P4512 [模板] 多项式除法
题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...
- 洛谷 P4238 [模板] 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 多项式求逆元详解+模板 【洛谷P4238】多项式求逆
概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
随机推荐
- Mac openssl 和curl源码编译
1.先编译openssl, 下载源码后解压,终端进入源码目录,输入命令配置编译环境:./Configure darwin64-x86_64-cc 等待配置完成后,输入make 和make insta ...
- Leetcode463. Island Perimeter
题目 给定一个包含 0 和 1 的二维网格地图,其中 1 表示陆地 0 表示水域. 网格中的格子水平和垂直方向相连(对角线方向不相连).整个网格被水完全包围,但其中恰好有一个岛屿(或者说,一个或多个表 ...
- 轻量级自动化工具 pssh
pssh应用场景 pssh是一个用python编写的可以并发在多台服务器上批量执行命令的工具,它支持文件并行复制,远程并行执行命令,其中文件并行复制是pssh的核心功能,也是同类工具中的一个亮点. 要 ...
- 你们知道SEO每天都在做什么吗?
医院也有做SEO的,专门负责医院网站优化工作,那么医院的SEO每天都做什么呢?偶然见到一篇文章,转载来分享给大家.感觉写的很实在. 大凡做seo工作的人都知道seo工作者每天都要做大量的外链,像有些个 ...
- 对于未来学习Linux的决心书,以此为鉴
学习Linux的决心书 我叫曹佳佳,来自祖国的大西北甘肃庆阳,2016年大专毕业之后从事自己的专业风力发电行业工作了两年多在从事风电行业的过程中越来越感觉到自己的薪资待遇和以后的发展空间越来越小,而且 ...
- JS之执行上下文
执行上下文(execution context),是JS中的一个很重要的概念.它对于我们理解函数定义,执行时都做了什么有着很大的意义.理解它我们才能明白我们常说的函数声明提升,作用域链,闭包等原理. ...
- 简单php实现同一时间内一个账户只允许在一个终端登陆
在账户表的基础上,我新建了一个账户account_session表,用来记录登录账户的account_id和最新一次登录成功用户的session_id,然后首先要修改登录方法:每次登录成功后,要将登录 ...
- 记 页面使用overflow-scroll在iOS上滑动卡顿的问题
页面使用overflow-scroll在iOS上滑动卡顿的问题 因在做一个滑动的list列表,为某个div使用了overflow: scroll属性. 结果在手机上测试时,ios手机有明显的滑动卡顿问 ...
- [Link-Cut-Tree][BZOJ2631]Tree
题面 Description: 一棵\(n\)个点的树,每个点的初始权值为\(1\).对于这棵树有\(q\)个操作,每个操作为以下四种操作之一: + u v c:将\(u\)到\(v\)的路径上的点的 ...
- 笔记-python-lib-contextlib
笔记-python-lib-contextlib 1. contextlib with 语句很好用,但不想每次都写__enter_-和__exit__方法: py标准库也为此提供了工具模块c ...