CF708C Centroids [树形DP,换根DP]
Description
给定一棵树。
至多进行一次操作:删去一条边,连接一条新边,保证操作完后仍是树。
问每个点在进行操作后是否可以成为树的重心。
Solution
性质\(1\):若一个点不是树的重心,则它的必然有一个大小大于 \(\lfloor n/2\rfloor\) 的子树。
性质\(2\):如果一个点合法,要么它本来就是重心,要么它只有一个子树大于 \(\lfloor n/2\rfloor\),且从这个子树中移除一个最大的小于等于 \(\lfloor n/2\rfloor\) 的子树可以使它自己也小于等于 \(\lfloor n/2\rfloor\)。
考虑 树形dp,设 \(f(u)\) 表示以 \(u\) 为根的子树中,最大的不超过 \(\lfloor n/2\rfloor\) 的子树大小,初始先以 \(1\) 为总根,转移如下,
当 \(size_v\le \lfloor n/2\rfloor\) 时,\(f(u) = \max(f(u),size_v)\),
否则 \(f(u) = \max(f(u),f(v))\),
\(v\in son_u\)。
考虑如何处理子树外的答案,即换根,设 \(g(u)\) 表示不在以 \(u\) 为根的子树内的答案,
为了方便转移,我们需要更改一下状态 \(f\),设 \(f(u,0/1)\) 分别表示最大答案和次大答案,转移和原来类似,然后还要记录一下每个点的最佳转移状态,就是它最终是由哪个点转移过来的,
\(g\) 的转移如下,
当 \(f(u,0)\) 的最佳转移是 \(v\) 时,
- 如果 \(n-size_u\le \lfloor n/2\rfloor\),那么 \(g(v) = \max(g(u),n-size_u,f(u,1))\),
- 否则 \(g(v) = \max(g(u),f(u,1))\),
否则,
- 如果 \(n-size_u\le \lfloor n/2\rfloor\),那么 \(g(v) = \max(g(u),n-size_u,f(u,0))\),
- 否则 \(g(v) = \max(g(u),f(u,0))\)。
最终根据性质\(2\),判断每个点是否合法即可。
Code
const int N = 4e5 + 5;
int n;
vector <int> e[N];
int siz[N], f[N][2], mx[N]; // f(u) : 以 u 为根的子树内满足大小 <=n/2 的最大和次大子树大小 (整棵树以 1 为根)
// mx(u) : 记录 f(u) 的最佳转移 v
int g[N];
bool ans[N];
void dfsF(int u, int fa){
siz[u] = 1;
for(int v : e[u]){
if(v == fa) continue;
dfsF(v, u);
siz[u] += siz[v];
if(siz[v] <= n / 2){
if(siz[v] > f[u][0]){ // 最大和次大不能从同一个子树转移!
f[u][1] = f[u][0];
f[u][0] = siz[v];
mx[u] = v;
}else if(siz[v] > f[u][1]) f[u][1] = siz[v];
}
else{
if(f[v][0] > f[u][0]){
f[u][1] = f[u][0];
f[u][0] = f[v][0];
mx[u] = v;
}else if(f[v][0] > f[u][1]) f[u][1] = f[v][0];
}
}
}
void dfsG(int u, int fa){
for(int v : e[u]){
if(v == fa) continue;
if(mx[u] == v){
if(n - siz[u] <= n / 2) g[v] = max(f[u][1], n - siz[u]);
else g[v] = max(f[u][1], g[u]);
}else{
if(n - siz[u] <= n / 2) g[v] = max(f[u][0], n - siz[u]);
else g[v] = max(f[u][0], g[u]);
}
dfsG(v, u);
}
}
void dfsAns(int u, int fa){
int mx = n - siz[u];
int cnt = 0, id = -1;
if(mx > n / 2) id = fa, cnt++;
for(int v : e[u]){
if(v == fa) continue;
if(siz[v] > n / 2){
mx = siz[v];
id = v;
cnt++;
}
dfsAns(v, u);
}
if(cnt == 0) ans[u] = true;
else if(cnt == 1 && id == fa && mx - g[u] <= n / 2) ans[u] = true;
else if(cnt == 1 && id != fa && mx - f[id][0] <= n / 2) ans[u] = true;
else ans[u] = false;
}
void Solve(){
cin >> n;
int u, v;
for(int i = 1; i <= n - 1; i++){
cin >> u >> v;
e[u].ps(v);
e[v].ps(u);
}
dfsF(1, 0);
dfsG(1, 0);
dfsAns(1, 0);
for(int i = 1; i <= n; i++) cout << ans[i] << ' ';
}
CF708C Centroids [树形DP,换根DP]的更多相关文章
- bzoj 3743 [Coci2015]Kamp——树形dp+换根
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3743 树形dp+换根. “从根出发又回到根” 减去 “mx ” . 注意dfsx里真的要改那 ...
- 模拟赛:树和森林(lct.cpp) (树形DP,换根DP好题)
题面 题解 先解决第一个子问题吧,它才是难点 Subtask_1 我们可以先用一个简单的树形DP处理出每棵树内部的dis和,记为dp0[i], 然后再用一个换根的树形DP处理出每棵树内点 i 到树内每 ...
- 树形dp换根,求切断任意边形成的两个子树的直径——hdu6686
换根dp就是先任取一点为根,预处理出一些信息,然后在第二次dfs过程中进行状态的转移处理 本题难点在于任意割断一条边,求出剩下两棵子树的直径: 设割断的边为(u,v),设down[v]为以v为根的子树 ...
- Centroids (换根DP)
题面 题解 删一条边.加一条边,相当于把一个子树折下来,然后嫁接在一个点上, 那么最优的情况肯定是接在根上,对吧,很好理解吧 那么这个拆下来的子树大小就不能超过n/2. 我们用son[]来表示每个点为 ...
- POJ 3585 Accumulation Degree【换根DP】
传送门:http://poj.org/problem?id=3585 题意:给定一张无根图,给定每条边的容量,随便取一点使得从这个点出发作为源点,发出的流量最大,并且输出这个最大的流量. 思路:最近开 ...
- 【换根DP】小奇的仓库
题目背景 小奇采的矿实在太多了,它准备在喵星系建个矿石仓库.令它无语的是,喵星系的货运飞船引擎还停留在上元时代! 题目内容 喵星系有\(n\)个星球,星球以及星球间的航线形成一棵树. 从星球\(a\) ...
- [倍增][换根DP]luogu P5024 保卫王国
题面 https://www.luogu.com.cn/problem/P5024 分析 可以对有限制的点对之间的链进行在倍增上的DP数组合并. 需要通过一次正向树形DP和一次换根DP得到g[0][i ...
- [BZOJ4379][POI2015]Modernizacja autostrady[树的直径+换根dp]
题意 给定一棵 \(n\) 个节点的树,可以断掉一条边再连接任意两个点,询问新构成的树的直径的最小和最大值. \(n\leq 5\times 10^5\) . 分析 记断掉一条边之后两棵树的直径为 \ ...
- 2018.10.15 NOIP训练 水流成河(换根dp)
传送门 换根dp入门题. 貌似李煜东的书上讲过? 不记得了. 先推出以1为根时的答案. 然后考虑向儿子转移. 我们记f[p]f[p]f[p]表示原树中以ppp为根的子树的答案. g[p]g[p]g[p ...
- 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市
P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...
随机推荐
- ffmpeg精简
自:http://www.chinavideo.org/viewthread.php?tid=5567&extra=page%3D1&page=2 现在更新一下目前遇到的问题: 我想裁 ...
- uniapp生成的app怎么上架到iphone的app store
首先这里需要强调的是,上架app store,必须用自己公司的账号的证书打包,不能使用别的公司的证书打包,因为假如使用别人的证书打包,打包出来的app,只能上传到别人的app store账号,你开发的 ...
- P9058 [Ynoi2004] rpmtdq 与 P9678 [ICPC2022 Jinan R] Tree Distance
思路: 注意到点对数量有 \(N^2\) 个,考虑丢掉一些无用的点对. 对于点对 \((x_1,y_1),(x_2,y_2)\),满足 \(x_1 \le x_2 < y_2 \le y_1\) ...
- ddddocr验证码图片识别YYDS
纯数字 数字+字母 python代码: import ddddocr def main(imgpath): # imgpath='E:\yam_0.png' ocr = ddddocr.DdddOcr ...
- 单细胞转录组上游fasta文件处理
单细胞分析上游fasta文件处理 --基于cellranger与dropseqRunner ###如果测序文件由10X genomics平台产生,则采用cellranger count的基本流程进行f ...
- 【Java / JavaScript】AES加密解密
Java封装的AES加密解密工具类: 几个重要的参数信息 - 需要指定一个密钥串sKey 密钥内容自定义 数字 + 字母 + 特殊符号 - 加密方式为 AES - AES下面的模式ECB - ECB下 ...
- 【Vue】可编辑表格与三级联动下拉
需求是给员工分配岗位,设计上是一人多岗的存在... 单位 -- 部门 -- 岗位 这样的层级 功能效果: 因为员工可以在不同的单位下任职岗位,所以这个每一个岗位都是一个独立 查询单位列表是固定的,但是 ...
- 【DataBase】MySQL 09 SQL函数 单行函数其三 日期函数
日期函数 日期&时间函数 NOW 当前日期时间. CURDATE 当前日期. CURTIME 当前时间 -- NOW();返回系统日期+时间 SELECT NOW(); -- CURDATE( ...
- 【PostgreSQL】01 环境搭建
[PostgreSQL数据库安装] 数据库本体就没下本机了,直接挂服务器的Docker上面跑 docker pull postgres:9.4 创建容器并运行: docker run --name p ...
- Jax框架的Traced object特性与TensorFlow的placeholder的一致性
前文: Jax框架的static与Traced Operations -- Static vs Traced Operations 前文讨论分析了Jax的static特性和Traced特性,这些谈下个 ...