Description

给定一棵树。

至多进行一次操作:删去一条边,连接一条新边,保证操作完后仍是树。

问每个点在进行操作后是否可以成为树的重心。

Solution

性质\(1\):若一个点不是树的重心,则它的必然有一个大小大于 \(\lfloor n/2\rfloor\) 的子树。

性质\(2\):如果一个点合法,要么它本来就是重心,要么它只有一个子树大于 \(\lfloor n/2\rfloor\),且从这个子树中移除一个最大的小于等于 \(\lfloor n/2\rfloor\) 的子树可以使它自己也小于等于 \(\lfloor n/2\rfloor\)。

考虑 树形dp,设 \(f(u)\) 表示以 \(u\) 为根的子树中,最大的不超过 \(\lfloor n/2\rfloor\) 的子树大小,初始先以 \(1\) 为总根,转移如下,

当 \(size_v\le \lfloor n/2\rfloor\) 时,\(f(u) = \max(f(u),size_v)\),

否则 \(f(u) = \max(f(u),f(v))\),

\(v\in son_u\)。

考虑如何处理子树外的答案,即换根,设 \(g(u)\) 表示不在以 \(u\) 为根的子树内的答案,

为了方便转移,我们需要更改一下状态 \(f\),设 \(f(u,0/1)\) 分别表示最大答案和次大答案,转移和原来类似,然后还要记录一下每个点的最佳转移状态,就是它最终是由哪个点转移过来的,

\(g\) 的转移如下,

当 \(f(u,0)\) 的最佳转移是 \(v\) 时,

  • 如果 \(n-size_u\le \lfloor n/2\rfloor\),那么 \(g(v) = \max(g(u),n-size_u,f(u,1))\),
  • 否则 \(g(v) = \max(g(u),f(u,1))\),

否则,

  • 如果 \(n-size_u\le \lfloor n/2\rfloor\),那么 \(g(v) = \max(g(u),n-size_u,f(u,0))\),
  • 否则 \(g(v) = \max(g(u),f(u,0))\)。

最终根据性质\(2\),判断每个点是否合法即可。

Code

const int N = 4e5 + 5;

int n;

vector <int> e[N];

int siz[N], f[N][2], mx[N]; // f(u) : 以 u 为根的子树内满足大小 <=n/2 的最大和次大子树大小 (整棵树以 1 为根)
// mx(u) : 记录 f(u) 的最佳转移 v
int g[N];
bool ans[N]; void dfsF(int u, int fa){
siz[u] = 1;
for(int v : e[u]){
if(v == fa) continue;
dfsF(v, u);
siz[u] += siz[v];
if(siz[v] <= n / 2){
if(siz[v] > f[u][0]){ // 最大和次大不能从同一个子树转移!
f[u][1] = f[u][0];
f[u][0] = siz[v];
mx[u] = v;
}else if(siz[v] > f[u][1]) f[u][1] = siz[v];
}
else{
if(f[v][0] > f[u][0]){
f[u][1] = f[u][0];
f[u][0] = f[v][0];
mx[u] = v;
}else if(f[v][0] > f[u][1]) f[u][1] = f[v][0];
}
}
} void dfsG(int u, int fa){
for(int v : e[u]){
if(v == fa) continue;
if(mx[u] == v){
if(n - siz[u] <= n / 2) g[v] = max(f[u][1], n - siz[u]);
else g[v] = max(f[u][1], g[u]);
}else{
if(n - siz[u] <= n / 2) g[v] = max(f[u][0], n - siz[u]);
else g[v] = max(f[u][0], g[u]);
}
dfsG(v, u);
}
} void dfsAns(int u, int fa){
int mx = n - siz[u];
int cnt = 0, id = -1;
if(mx > n / 2) id = fa, cnt++; for(int v : e[u]){
if(v == fa) continue;
if(siz[v] > n / 2){
mx = siz[v];
id = v;
cnt++;
}
dfsAns(v, u);
} if(cnt == 0) ans[u] = true;
else if(cnt == 1 && id == fa && mx - g[u] <= n / 2) ans[u] = true;
else if(cnt == 1 && id != fa && mx - f[id][0] <= n / 2) ans[u] = true;
else ans[u] = false;
} void Solve(){
cin >> n;
int u, v;
for(int i = 1; i <= n - 1; i++){
cin >> u >> v;
e[u].ps(v);
e[v].ps(u);
} dfsF(1, 0);
dfsG(1, 0);
dfsAns(1, 0); for(int i = 1; i <= n; i++) cout << ans[i] << ' ';
}

CF708C Centroids [树形DP,换根DP]的更多相关文章

  1. bzoj 3743 [Coci2015]Kamp——树形dp+换根

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3743 树形dp+换根. “从根出发又回到根” 减去 “mx ” . 注意dfsx里真的要改那 ...

  2. 模拟赛:树和森林(lct.cpp) (树形DP,换根DP好题)

    题面 题解 先解决第一个子问题吧,它才是难点 Subtask_1 我们可以先用一个简单的树形DP处理出每棵树内部的dis和,记为dp0[i], 然后再用一个换根的树形DP处理出每棵树内点 i 到树内每 ...

  3. 树形dp换根,求切断任意边形成的两个子树的直径——hdu6686

    换根dp就是先任取一点为根,预处理出一些信息,然后在第二次dfs过程中进行状态的转移处理 本题难点在于任意割断一条边,求出剩下两棵子树的直径: 设割断的边为(u,v),设down[v]为以v为根的子树 ...

  4. Centroids (换根DP)

    题面 题解 删一条边.加一条边,相当于把一个子树折下来,然后嫁接在一个点上, 那么最优的情况肯定是接在根上,对吧,很好理解吧 那么这个拆下来的子树大小就不能超过n/2. 我们用son[]来表示每个点为 ...

  5. POJ 3585 Accumulation Degree【换根DP】

    传送门:http://poj.org/problem?id=3585 题意:给定一张无根图,给定每条边的容量,随便取一点使得从这个点出发作为源点,发出的流量最大,并且输出这个最大的流量. 思路:最近开 ...

  6. 【换根DP】小奇的仓库

    题目背景 小奇采的矿实在太多了,它准备在喵星系建个矿石仓库.令它无语的是,喵星系的货运飞船引擎还停留在上元时代! 题目内容 喵星系有\(n\)个星球,星球以及星球间的航线形成一棵树. 从星球\(a\) ...

  7. [倍增][换根DP]luogu P5024 保卫王国

    题面 https://www.luogu.com.cn/problem/P5024 分析 可以对有限制的点对之间的链进行在倍增上的DP数组合并. 需要通过一次正向树形DP和一次换根DP得到g[0][i ...

  8. [BZOJ4379][POI2015]Modernizacja autostrady[树的直径+换根dp]

    题意 给定一棵 \(n\) 个节点的树,可以断掉一条边再连接任意两个点,询问新构成的树的直径的最小和最大值. \(n\leq 5\times 10^5\) . 分析 记断掉一条边之后两棵树的直径为 \ ...

  9. 2018.10.15 NOIP训练 水流成河(换根dp)

    传送门 换根dp入门题. 貌似李煜东的书上讲过? 不记得了. 先推出以1为根时的答案. 然后考虑向儿子转移. 我们记f[p]f[p]f[p]表示原树中以ppp为根的子树的答案. g[p]g[p]g[p ...

  10. 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市

    P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...

随机推荐

  1. 在英特尔 Gaudi 2 上加速蛋白质语言模型 ProtST

    引言 蛋白质语言模型 (Protein Language Models, PLM) 已成为蛋白质结构与功能预测及设计的有力工具.在 2023 年国际机器学习会议 (ICML) 上,MILA 和英特尔实 ...

  2. RHCA rh442 005 (NICE FIFO RR) 资源强占与分配 cpuset

    cgroup 容器 控制服务访问 limits 控制用户 进程管理 [root@servera ~]# ps -aux | more USER PID %CPU %MEM VSZ RSS TTY ST ...

  3. python中基于tcp协议与udp的通信

    python中基于tcp协议与udp的通信(数据传输)   一.TCP协议介绍 流式协议(以数据流的形式通信传输) 安全协议(收发信息都需收到确认信息才能完成收发,是一种双向通道的通信) tcp协议在 ...

  4. 【PowerDesigner】快速上手

    破解下载地址: https://www.onlinedown.net/soft/577763.htm 安装点试用,完成安装后把破解的dll库文件替换即可 学习参考自: https://www.bili ...

  5. 智慧城市(Smart City)—— 华为预测2025年的10大趋势( Huawei Predicts 10 Megatrends for 2025 )

    原文: https://www.huawei.com/en/news/2019/8/huawei-predicts-10-megatrends-2025 相关: https://www.huawei. ...

  6. 如何查看华为的大模型(AI模型),华为官方的mindspore下的大模型???

    由于华为官方的mindspore网站的设计比较反人性话,操作起来十分的复杂,因此如果想要在华为的官方网站上查找这个华为的官方大模型还是比较困难的,为此直接给出链接地址. PS. 要注意,华为的AI官方 ...

  7. 一文搞懂DevOps、DataOps、MLOps、AIOps:所有“Ops”的比较

    引言 近年来,"Ops"一词在 IT 运维领域的使用迅速增加.IT 运维正在向自动化过程转变,以改善客户交付.传统的应用程序开发采用 DevOps 实施持续集成(CI)和持续部署( ...

  8. ρars/ey 题解

    给个链接:ρars/ey. 我们考虑一个树上背包. 设 \(f_{u,i}\) 表示在 \(u\) 号节点的子树内删除 \(i\) 个点的最小代价.显然有答案为 \(f_{1,siz_1-1}\). ...

  9. SMU Summer 2023 Contest Round 1

    SMU Summer 2023 Contest Round 1 A. The Contest 当 \(m\) 为 \(0\) 和 完成时间大于最后一个时刻时,说明都无法在规定条件内完成,输出\(-1\ ...

  10. STM32F3, STM32F4编程手册

    1. Cortex-M4的内核设备 NVIC, Nested vectored interrupt controller SCB, System control block SysTick, The ...