RDD(Resilient Distributed Dataset)叫做弹性分布式数据集RDD,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。

RDD包含很多分区,由一系列分区构成,一个分区构成一个逻辑分片。

1)一组分片(Partition),即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。

2)一个计算每个分区的函数。Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。

3)RDD之间的依赖关系。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。宽依赖和窄依赖。

4)一个Partitioner,即RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。只有对于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出时的分片数量

5)一个列表,存储存取每个Partition的优先位置(preferred location)。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。

1.1. 创建RDD

1)由一个已经存在的Scala集合创建。

val rdd1 = sc.parallelize(Array(1,2,3,4,5,6,7,8))

2)由外部存储系统的数据集创建,包括本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、Cassandra、HBase等

val rdd2 = sc.textFile("hdfs://node1.beicai.cn:9000/words.txt")

2.3. RDD编程API

2.3.1. Transformation

RDD中的所有转换都是延迟加载的,也就是说,它们并不会直接计算结果。相反的,它们只是记住这些应用到基础数据集(例如一个文件)上的转换动作。只有当发生一个要求返回结果给Driver的动作时,这些转换才会真正运行。这种设计让Spark更加有效率地运行。

常用的Transformation:

转换

含义

map(func)

返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成

filter(func)

返回一个新的RDD,该RDD由经过func函数计算后返回值为true的输入元素组成

flatMap(func)

类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素)

mapPartitions(func)

类似于map,但独立地在RDD的每一个分片上运行,因此在类型为T的RDD上运行时,func的函数类型必须是Iterator[T] => Iterator[U]

mapPartitionsWithIndex(func)

类似于mapPartitions,但func带有一个整数参数表示分片的索引值,因此在类型为T的RDD上运行时,func的函数类型必须是

(Int, Interator[T]) => Iterator[U]

sample(withReplacement, fraction, seed)

根据fraction指定的比例对数据进行采样,可以选择是否使用随机数进行替换,seed用于指定随机数生成器种子

union(otherDataset)

对源RDD和参数RDD求并集后返回一个新的RDD

intersection(otherDataset)

对源RDD和参数RDD求交集后返回一个新的RDD

distinct([numTasks]))

对源RDD进行去重后返回一个新的RDD

groupByKey([numTasks])

在一个(K,V)的RDD上调用,返回一个(K, Iterator[V])的RDD

reduceByKey(func, [numTasks])

在一个(K,V)的RDD上调用,返回一个(K,V)的RDD,使用指定的reduce函数,将相同key的值聚合到一起,与groupByKey类似,reduce任务的个数可以通过第二个可选的参数来设置

aggregateByKey(zeroValue)(seqOp, combOp, [numTasks])

sortByKey([ascending], [numTasks])

在一个(K,V)的RDD上调用,K必须实现Ordered接口,返回一个按照key进行排序的(K,V)的RDD

sortBy(func,[ascending], [numTasks])

与sortByKey类似,但是更灵活

join(otherDataset, [numTasks])

在类型为(K,V)和(K,W)的RDD上调用,返回一个相同key对应的所有元素对在一起的(K,(V,W))的RDD

cogroup(otherDataset, [numTasks])

在类型为(K,V)和(K,W)的RDD上调用,返回一个(K,(Iterable<V>,Iterable<W>))类型的RDD

cartesian(otherDataset)

笛卡尔积

pipe(command, [envVars])

coalesce(numPartitions)

repartition(numPartitions)

repartitionAndSortWithinPartitions(partitioner)

 

2.3.2. Action

动作

含义

reduce(func)

通过func函数聚集RDD中的所有元素,这个功能必须是可交换且可并联的

collect()

在驱动程序中,以数组的形式返回数据集的所有元素

count()

返回RDD的元素个数

first()

返回RDD的第一个元素(类似于take(1))

take(n)

返回一个由数据集的前n个元素组成的数组

takeSample(withReplacement,num, [seed])

返回一个数组,该数组由从数据集中随机采样的num个元素组成,可以选择是否用随机数替换不足的部分,seed用于指定随机数生成器种子

takeOrdered(n[ordering])

saveAsTextFile(path)

将数据集的元素以textfile的形式保存到HDFS文件系统或者其他支持的文件系统,对于每个元素,Spark将会调用toString方法,将它装换为文件中的文本

saveAsSequenceFile(path)

将数据集中的元素以Hadoop sequencefile的格式保存到指定的目录下,可以使HDFS或者其他Hadoop支持的文件系统。

saveAsObjectFile(path)

countByKey()

针对(K,V)类型的RDD,返回一个(K,Int)的map,表示每一个key对应的元素个数。

foreach(func)

在数据集的每一个元素上,运行函数func进行更新。

2.3.4练习

启动spark-shell

/usr/local/spark-1.5.2-bin-hadoop2.6/bin/spark-shell --master spark://node1.beicai.cn:7077

常用transformation举例:

Map:返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成

Filter:返回一个新的RDD,该RDD由经过func函数计算后返回值为true的输入元素组成

flatMap:与map类似,区别是原RDD中的元素经map处理后只能生成一个元素,而原RDD中的元素经flatmap处理后可生成多个元素来构建新RDD。 举例:对原RDD中的每个元素x产生y个元素(从1到y,y为元素x的值)

Partitions :显示分区,一般与length一起使用

union:求并集,注意类型要一致

#intersection求交集

Join 操作,根据key 聚合 ,有join,leftjoin,rightjoin

GroupByKey: 根据可以进行分组

Cogroup:和join很像,但是会先在每个集合中聚合

Cartesian :求笛卡尔积

#spark action

val rdd1 = sc.parallelize(List(1,2,3,4,5), 2)

#collect 是把rdd转换为  数组

rdd1.collect

#reduce  前面这个_ 是一个累计值,后面是每一个数

val rdd2 = rdd1.reduce(_+_)

#count  就是有个数

rdd1.count

#top

rdd1.top(2)

#take

rdd1.take(2)

#first(similer to take(1))

rdd1.first

#takeOrdered  用法很相似,但是的反着的

rdd1.takeOrdered(3)

//想要了解更多,访问下面的地址

http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html

2.4 RDD的依赖关系

RDD和它依赖的父RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。

2.4.1  窄依赖

窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Partition使用

总结:窄依赖我们形象的比喻为独生子女-----也叫非shuffle算子

2.4.2 宽依赖

宽依赖指的是多个子RDD的Partition会依赖同一个父RDD的Partition

总结:窄依赖我们形象的比喻为超生--也叫shuffle算子

2.4.3 Lineage

RDD只支持粗粒度转换,即在大量记录上执行的单个操作。将创建RDD的一系列Lineage(即血统)记录下来,以便恢复丢失的分区。RDD的Lineage会记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。

2.4.4 RDD的缓存

Spark速度非常快的原因之一,就是在不同操作中可以在内存中持久化或缓存多个数据集。当持久化某个RDD后,每一个节点都将把计算的分片结果保存在内存中,并在对此RDD或衍生出的RDD进行的其他动作中重用。这使得后续的动作变得更加迅速。RDD相关的持久化和缓存,是Spark最重要的特征之一。可以说,缓存是Spark构建迭代式算法和快速交互式查询的关键。

2.4.5 RDD的缓存方式

什么是RDD的更多相关文章

  1. Spark RDD 核心总结

    摘要: 1.RDD的五大属性 1.1 partitions(分区) 1.2 partitioner(分区方法) 1.3 dependencies(依赖关系) 1.4 compute(获取分区迭代列表) ...

  2. Spark笔记:复杂RDD的API的理解(下)

    本篇接着谈谈那些稍微复杂的API. 1)   flatMapValues:针对Pair RDD中的每个值应用一个返回迭代器的函数,然后对返回的每个元素都生成一个对应原键的键值对记录 这个方法我最开始接 ...

  3. Spark笔记:复杂RDD的API的理解(上)

    本篇接着讲解RDD的API,讲解那些不是很容易理解的API,同时本篇文章还将展示如何将外部的函数引入到RDD的API里使用,最后通过对RDD的API深入学习,我们还讲讲一些和RDD开发相关的scala ...

  4. Spark笔记:RDD基本操作(下)

    上一篇里我提到可以把RDD当作一个数组,这样我们在学习spark的API时候很多问题就能很好理解了.上篇文章里的API也都是基于RDD是数组的数据模型而进行操作的. Spark是一个计算框架,是对ma ...

  5. Spark笔记:RDD基本操作(上)

    本文主要是讲解spark里RDD的基础操作.RDD是spark特有的数据模型,谈到RDD就会提到什么弹性分布式数据集,什么有向无环图,本文暂时不去展开这些高深概念,在阅读本文时候,大家可以就把RDD当 ...

  6. Spark核心——RDD

    Spark中最核心的概念为RDD(Resilient Distributed DataSets)中文为:弹性分布式数据集,RDD为对分布式内存对象的 抽象它表示一个被分区不可变且能并行操作的数据集:R ...

  7. 【原】Learning Spark (Python版) 学习笔记(一)----RDD 基本概念与命令

    <Learning Spark>这本书算是Spark入门的必读书了,中文版是<Spark快速大数据分析>,不过豆瓣书评很有意思的是,英文原版评分7.4,评论都说入门而已深入不足 ...

  8. Spark Rdd coalesce()方法和repartition()方法

    在Spark的Rdd中,Rdd是分区的. 有时候需要重新设置Rdd的分区数量,比如Rdd的分区中,Rdd分区比较多,但是每个Rdd的数据量比较小,需要设置一个比较合理的分区.或者需要把Rdd的分区数量 ...

  9. RDD/Dataset/DataFrame互转

    1.RDD -> Dataset val ds = rdd.toDS() 2.RDD -> DataFrame val df = spark.read.json(rdd) 3.Datase ...

  10. 深入理解Spark(一):Spark核心概念RDD

    RDD全称叫做弹性分布式数据集(Resilient Distributed Datasets),它是一种分布式的内存抽象,表示一个只读的记录分区的集合,它只能通过其他RDD转换而创建,为此,RDD支持 ...

随机推荐

  1. 用友BIP全面预算

    全面预算是企业在经营过程中制定并实施的一种财务管理工具,它考虑了企业的各个方面,包括销售.采购.生产.财务.人力资源等,以全面的视角规划和控制企业的财务活动. 用友BIP全面预算数智化解决方案利用了& ...

  2. 01 Xpath简明教程(十分钟入门)

    目录 Xpath简明教程(十分钟入门) Xpath表达式 Xpath节点 节点关系 Xpath基本语法 1) 基本语法使用 2) xpath通配符 3) 多路径匹配 Xpath内建函数 Xpath简明 ...

  3. python—CSV的读写

    目录 csv文件 打开模式 1.写入数组类型数据 2.写入字典序列类型数据 3.csv的读取 csv文件 CSV是一种以逗号分隔数值的文件类型,在数据库或电子表格中,常见的导入导出文件格式就是CSV格 ...

  4. mod操作符效率高吗?

    编程语言中mod取余操作符%的效率不是很高,比如M = N % 10,它花费得时间本机测试是1ms,而如果使用M = N - N / 10 * 10,则只需要0.1ms. 所以平时变成得时候,可以尽量 ...

  5. 读写可编程 SIM/USIM 卡

    目录 文章目录 目录 SIM 卡 USIM 卡 USIM 卡的关键参数 pySim 读写软件与 ADM key SIM 卡 SIM 卡,用户身份模块(Subscriber Identity Modul ...

  6. 拼接sql 参数化 where userId in(@userIds)的问题

    这里@userIds 如果 写成101,202,301翻译后的sql的where部分会是: where userId in('101,202,301'): 而不是期待的: where userId i ...

  7. 使用rem、动态vh自适应移动端

    前言 这是我的 模仿抖音 系列文章的第六篇 第一篇:200行代码实现类似Swiper.js的轮播组件 第二篇:实现抖音 "视频无限滑动"效果 第三篇:Vue 路由使用介绍以及添加转 ...

  8. iOS手工Crash解析

    一.测试导出来一份ips crash文件,现在需要进行手工解析 现在需要下载对应的dsym文件,为了确定下载好的dsym文件和crash log是不是一致的,可以先看下dsym文件中的uuid p.p ...

  9. Leetcode-937-Reorder Log Files-(Easy)

    一.题目描述 You have an array of logs.  Each log is a space delimited string of words. For each log, the ...

  10. c++ Primer Plus 第六版学习记录

    立个flag,一天看20页,一个半月看完!!! 第一章 预备知识 高效简洁.面向对象.泛型编程 汇编不具有通用性,换一个处理器可能就要重新写一套! 编译器(是一个程序)负责解决这个问题,把一份高级语言 ...