作者:PrimiHub-Kevin

ROC 曲线是一种坐标图式的分析工具,是由二战中的电子和雷达工程师发明的,发明之初是用来侦测敌军飞机、船舰,后来被应用于医学、生物学、犯罪心理学。

如今,ROC 曲线已经被广泛应用于机器学习领域的模型评估,说到这里就不得不提到 Tom Fawcett 大佬,他一直在致力于推广 ROC 在机器学习领域的应用,他发布的论文《An introduction to ROC analysis》更是被奉为 ROC 的经典之作(引用 2.2w 次),知名机器学习库 scikit-learn 中的 ROC 算法就是参考此论文实现,可见其影响力!

不知道大多数人是否和我一样,对于 ROC 曲线的理解只停留在调用 scikit-learn 库的函数,对于它的背后原理和公式所知甚少。

前几天我重读了《An introduction to ROC analysis》终于将 ROC 曲线彻底搞清楚了,独乐乐不如众乐乐!如果你也对 ROC 的算法及实现感兴趣,不妨花些时间看完全文,相信你一定会有所收获!

一、什么是 ROC 曲线

下图中的蓝色曲线就是 ROC 曲线,它常被用来评价二值分类器的优劣,即评估模型预测的准确度。

二值分类器,就是字面意思它会将数据分成两个类别(正/负样本)。例如:预测银行用户是否会违约、内容分为违规和不违规,以及广告过滤、图片分类等场景。篇幅关系这里不做多分类 ROC 的讲解。

坐标系中纵轴为 TPR(真阳率/命中率/召回率)最大值为 1,横轴为 FPR(假阳率/误判率)最大值为 1,虚线为基准线(最低标准),蓝色的曲线就是 ROC 曲线。其中 ROC 曲线距离基准线越远,则说明该模型的预测效果越好

  • ROC 曲线接近左上角:模型预测准确率很高
  • ROC 曲线略高于基准线:模型预测准确率一般
  • ROC 低于基准线:模型未达到最低标准,无法使用

二、背景知识

考虑一个二分类模型, 负样本(Negative) 为 0,正样本(Positive) 为 1。即:

  • 标签 \(y\) 的取值为 0 或 1。
  • 模型预测的标签为 \(\hat{y}\),取值也是 0 或 1。

因此,将 \(y\) 与 \(\hat{y}\) 两两组合就会得到 4 种可能性,分别称为:

2.1 公式

ROC 曲线的横坐标为 FPR(False Positive Rate),纵坐标为 TPR(True Positive Rate)。FPR 统计了所有负样本中 预测错误(FP) 的比例,TPR 统计了所有正样本中 预测正确(TP) 的比例,其计算公式如下,其中 # 表示统计个数,例如 #N 表示负样本的个数,#P 表示正样本的个数

\(\text{FPR}=\frac{\#\text{FP}}{\#\text{N}}\),\(\text{TPR}=\frac{\#\text{TP}}{\#\text{P}}\)

2.2 计算方法

下面举一个实际例子作为讲解,以下表 5 个样本为例,讲解如何计算 FPR 和 TPR

id 真实标签\(y\) 预测标签\(\hat{y}\)
1 1 1
2 1 0
3 0 0
4 1 1
5 0 1

正样本数 #P=3,负样本数 #N=2。

其中 \(y=0\) 且 \(\hat{y}=1\) 的样本有 1 个,即 #FP=1,所以 FPR=1/2=0.5

其中 \(y=1\) 且 \(\hat{y}=1\) 的样本有 2 个,即 #TP=2,所以 FPR=2/3

FPR 和 TPR 的取值范围均是 0 到 1 之间。对于 FPR,我们希望其越小越好。而对于 TPR,我们希望其越大越好。

至此,我们已经介绍完如何计算 FPR 和 TPR 的值,下面将会讲解如何绘制 ROC 曲线。

三、绘制 ROC 曲线

讲到这里,可能有的同学会问:ROC 不是一条曲线吗?讲了这么多它到底应该怎么画呢?下面将分为两部分讲解如何绘制 ROC 曲线,直接打通你的“任督二脉”彻底拿下 ROC 曲线:

  • 第一部分:通过手绘的方式讲解原理
  • 第二部分:Python 代码实现,代码清爽易读

如果说上面是“开胃小菜”,那下面就是正菜啦!


3.1 手绘 ROC 曲线

一般在二分类模型里(标签取值为 0 或 1),会默认设定一个阈值 (threshold)。当预测分数大于这个阈值时,输出 1,反之输出 0。我们可以通过调节这个阈值,改变模型预测的输出,进而画出 ROC 曲线。

以下面表格中的 20 个点为例,介绍如何人工画出 ROC 曲线,其中正样本和负样本都是 10 个,即 #P = #N = 10。

id 真实标签 预测分数 id 真实标签 预测分数
1 1 .9 11 1 .4
2 1 .8 12 0 .39
3 0 .7 13 1 .38
4 1 .6 14 0 .37
5 1 .55 15 0 .36
6 1 .54 16 0 .35
7 0 .53 17 1 .34
8 0 .52 18 0 .33
9 1 .51 19 1 .30
10 0 .505 20 0 .1

当设定阈值为 0.9 时,只有第一个点预测为 1,其余都为 0,故 #FP=0、#TP=1,计算出 FPR=0/10=0,TPR=1/10=0.1,画出点 (0,0.1)

当设定阈值为 0.8 时,只有前两个点预测为 1,其余都为 0,故 #FP=0、#TP=2,计算出 FPR=0/10=0,TPR=2/10=0.2,画出点 (0,0.2)

当设定阈值为 0.7 时,只有前三个点预测为 1,其余都为 0,故 #FP=1、#TP=2,计算出 FPR=1/10=0.1,TPR=2/10=0.2,画出点 (0.1,0.2)。

以此类推,画出的 ROC 曲线如下:

因此,在画 ROC 曲线前,需要将预测分数从大到小排序,然后将预测分数依次设定为阈值,分别计算 FPR 和 TPR。而对于基准线,假设随机预测为正样本的概率为 \(x\),即 \(\Pr(\hat{y}=1)=x\) 由于 FPR 计算的是负样本中,预测为正样本的概率,因此 FPR=\(x\)(同理,TPR=\(x\))。所以,基准线为从点 (0, 0) 到 (1, 1) 的斜线

3.2 Python 代码

接下来,我们将结合代码讲解如何在 Python 中绘制 ROC 曲线。

下面的代码参考了《An Introduction to ROC Analysis》中的算法 1(伪代码)。值得一提的是,知名机器学习库 scikit-learn 的 roc_curve 函数 也参考了这个算法。

下面我自己实现的 roc 函数可以理解为是简化版的 roc_curve,这里的代码逻辑更加简洁易懂,算法的时间复杂度 \(O(n\log n)\)。完整的代码如下:

# import numpy as np
def roc(y_true, y_score, pos_label):
"""
y_true:真实标签
y_score:模型预测分数
pos_label:正样本标签,如“1”
"""
# 统计正样本和负样本的个数
num_positive_examples = (y_true == pos_label).sum()
num_negtive_examples = len(y_true) - num_positive_examples tp, fp = 0, 0
tpr, fpr, thresholds = [], [], []
score = max(y_score) + 1 # 根据排序后的预测分数分别计算fpr和tpr
for i in np.flip(np.argsort(y_score)):
# 处理样本预测分数相同的情况
if y_score[i] != score:
fpr.append(fp / num_negtive_examples)
tpr.append(tp / num_positive_examples)
thresholds.append(score)
score = y_score[i] if y_true[i] == pos_label:
tp += 1
else:
fp += 1 fpr.append(fp / num_negtive_examples)
tpr.append(tp / num_positive_examples)
thresholds.append(score) return fpr, tpr, thresholds

导入上面 3.1 表格中的数据,通过上面实现的 roc 方法,计算 ROC 曲线的坐标值。

import numpy as np

y_true = np.array(
[1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0]
)
y_score = np.array([
.9, .8, .7, .6, .55, .54, .53, .52, .51, .505,
.4, .39, .38, .37, .36, .35, .34, .33, .3, .1
]) fpr, tpr, thresholds = roc(y_true, y_score, pos_label=1)

最后,通过 Matplotlib 将计算出的 ROC 曲线坐标绘制成图。

import matplotlib.pyplot as plt

plt.plot(fpr, tpr)
plt.axis("square")
plt.xlabel("False positive rate")
plt.ylabel("True positive rate")
plt.title("ROC curve")
plt.show()

至此,ROC 的基础知识部分就全部讲完了,如果还想深入了解的同学可以继续往下看。

四、联邦学习中的 ROC 平均

如果将上面的内容比作“正餐”,那这里就是妥妥干货了,打起精神冲鸭!

顾名思义,ROC 平均就是将多条 ROC 曲线“平均化”。那么,什么场景需要做 ROC 平均呢?例如:横向联邦学习中,由于样本都在用户本地,服务器可以采用 ROC 平均的方式,计算近似的全局 ROC 曲线

ROC 的平均有两种方法:垂直平均、阈值平均,下面将逐一进行讲解,并给出 Python 代码实现。

4.1 垂直平均

垂直平均(Vertical averaging)的思想是,选取一些 FPR 的点,计算其平均的 TPR 值。下面是论文中的算法描述的伪代码,看不懂可直接略过看 Python 代码实现部分。

下面是 Python 的代码实现:

# import numpy as np
def roc_vertical_avg(samples, FPR, TPR):
"""
samples:选取FPR点的个数
FPR:包含所有FPR的列表
TPR:包含所有TPR的列表
"""
nrocs = len(FPR)
tpravg = []
fpr = [i / samples for i in range(samples + 1)] for fpr_sample in fpr:
tprsum = 0
# 将所有计算的tpr累加
for i in range(nrocs):
tprsum += tpr_for_fpr(fpr_sample, FPR[i], TPR[i])
# 计算平均的tpr
tpravg.append(tprsum / nrocs) return fpr, tpravg # 计算对应fpr的tpr
def tpr_for_fpr(fpr_sample, fpr, tpr):
i = 0
while i < len(fpr) - 1 and fpr[i + 1] <= fpr_sample:
i += 1 if fpr[i] == fpr_sample:
return tpr[i]
else:
return interpolate(fpr[i], tpr[i], fpr[i + 1], tpr[i + 1], fpr_sample) # 插值
def interpolate(fprp1, tprp1, fprp2, tprp2, x):
slope = (tprp2 - tprp1) / (fprp2 - fprp1)
return tprp1 + slope * (x - fprp1)

4.2 阈值平均

阈值平均(Threshold averaging)的思想是,选取一些阈值的点,计算其平均的 FPR 和 TPR。

下面是 Python 的代码实现:

# import numpy as np
def roc_threshold_avg(samples, FPR, TPR, THRESHOLDS):
"""
samples:选取FPR点的个数
FPR:包含所有FPR的列表
TPR:包含所有TPR的列表
THRESHOLDS:包含所有THRESHOLDS的列表
"""
nrocs = len(FPR)
T = []
fpravg = []
tpravg = [] for thresholds in THRESHOLDS:
for t in thresholds:
T.append(t)
T.sort(reverse=True) for tidx in range(0, len(T), int(len(T) / samples)):
fprsum = 0
tprsum = 0
# 将所有计算的fpr和tpr累加
for i in range(nrocs):
fprp, tprp = roc_point_at_threshold(FPR[i], TPR[i], THRESHOLDS[i], T[tidx])
fprsum += fprp
tprsum += tprp
# 计算平均的fpr和tpr
fpravg.append(fprsum / nrocs)
tpravg.append(tprsum / nrocs) return fpravg, tpravg # 计算对应threshold的fpr和tpr
def roc_point_at_threshold(fpr, tpr, thresholds, thresh):
i = 0
while i < len(fpr) - 1 and thresholds[i] > thresh:
i += 1
return fpr[i], tpr[i]

在我们的 PrimiHub 联邦学习模块中,就实现了上述 ROC 平均方法。

五、最后

本文由浅入深地详细介绍了 ROC 曲线算法,包含算法原理、公式、计算、源码实现和讲解,希望能够帮助读者一口气(看的时候可得喘气 ‍)搞懂 ROC。

虽然 ROC 是个不起眼的知识点,但能网上能彻底讲清楚 ROC 的文章并不多。所以我又花时间重温了一遍 Tom Fawcett 的经典论文《An introduction to ROC analysis》,并将论文的内容抽丝剥茧、配上通俗易懂的 Python 代码,最终写出了这篇文章。再次致敬 Tom Fawcett,感谢他在机器学习领域的贡献!


我们是 PrimiHub 密码学专家团队,用心去写每一篇内容,让每一位点开文章的读者都能有所收获。我们的内容专注于隐私计算领域,偶尔也涉及下机器学习领域。如果大家喜欢这个系列请留言告诉我们,它的姐妹篇 ACU 详解直接安排!

PrimiHub 一款由密码学专家团队打造的开源隐私计算平台,专注于分享数据安全、密码学、联邦学习、同态加密等隐私计算领域的技术和内容。

小白也能看懂的 ROC 曲线详解的更多相关文章

  1. ROC曲线详解

    转自https://blog.csdn.net/qq_26591517/article/details/80092679 1 ROC曲线的概念 受试者工作特征曲线 (receiver operatin ...

  2. 小白也能看懂的插件化DroidPlugin原理(二)-- 反射机制和Hook入门

    前言:在上一篇博文<小白也能看懂的插件化DroidPlugin原理(一)-- 动态代理>中详细介绍了 DroidPlugin 原理中涉及到的动态代理模式,看完上篇博文后你就会发现原来动态代 ...

  3. 小白也能看懂的插件化DroidPlugin原理(三)-- 如何拦截startActivity方法

    前言:在前两篇文章中分别介绍了动态代理.反射机制和Hook机制,如果对这些还不太了解的童鞋建议先去参考一下前两篇文章.经过了前面两篇文章的铺垫,终于可以玩点真刀实弹的了,本篇将会通过 Hook 掉 s ...

  4. 小白也能看懂的Redis教学基础篇——朋友面试被Skiplist跳跃表拦住了

    各位看官大大们,双节快乐 !!! 这是本系列博客的第二篇,主要讲的是Redis基础数据结构中ZSet(有序集合)底层实现之一的Skiplist跳跃表. 不知道那些是Redis基础数据结构的看官们,可以 ...

  5. 【vscode高级玩家】Visual Studio Code❤️安装教程(最新版🎉教程小白也能看懂!)

    目录 如果您在浏览过程中发现文章内容有误,请点此链接查看该文章的完整纯净版 下载 Linux Mac OS 安装 运行安装程序 同意使用协议 选择附加任务 准备安装 开始安装 安装完成 如果您在浏览过 ...

  6. 小白也能看懂的Redis教学基础篇——做一个时间窗限流就是这么简单

    不知道ZSet(有序集合)的看官们,可以翻阅我的上一篇文章: 小白也能看懂的REDIS教学基础篇--朋友面试被SKIPLIST跳跃表拦住了 书接上回,话说我朋友小A童鞋,终于面世通过加入了一家公司.这 ...

  7. 搭建分布式事务组件 seata 的Server 端和Client 端详解(小白都能看懂)

    一,server 端的存储模式为:Server 端 存 储 模 式 (store-mode) 支 持 三 种 : file: ( 默 认 ) 单 机 模 式 , 全 局 事 务 会 话 信 息 内 存 ...

  8. 小白进阶之Scrapy第六篇Scrapy-Redis详解(转)

    Scrapy-Redis 详解 通常我们在一个站站点进行采集的时候,如果是小站的话 我们使用scrapy本身就可以满足. 但是如果在面对一些比较大型的站点的时候,单个scrapy就显得力不从心了. 要 ...

  9. 小白也能看懂插件化DroidPlugin原理(一)-- 动态代理

    前言:插件化在Android开发中的优点不言而喻,也有很多文章介绍插件化的优势,所以在此不再赘述.前一阵子在项目中用到 DroidPlugin 插件框架 ,近期准备投入生产环境时出现了一些小问题,所以 ...

  10. 小白也能看懂的插件化DroidPlugin原理(一)-- 动态代理

    前言:插件化在Android开发中的优点不言而喻,也有很多文章介绍插件化的优势,所以在此不再赘述.前一阵子在项目中用到 DroidPlugin 插件框架 ,近期准备投入生产环境时出现了一些小问题,所以 ...

随机推荐

  1. ASTAR机台(win7 p'rofessional)使用python tool中文显示异常问题解决

    1.双击"computer"打开界面如下,再单击"open control panel"打开控制面板. 2.在控制面板中点击"Clock,Langua ...

  2. node.js基于react项目打包部署到nginx中(Linux服务器)

    1.首先进入React项目目录. 2.执行npm命令进行打包(生成dist包或build包). npm run build 3.将打包的静态文件放入nginx目录中(可以自己新创建一个目录,也可以放在 ...

  3. ES6 新增的一些特性

    还有symbol和set,map, bind,call,apply 1. let关键字 (1)基本用法:let关键字用来声明变量,它的用法类似于var,都是用来声明变量. (2)块级作用域:let声明 ...

  4. 2023 Hubei Provincial Collegiate Programming Contest题解 C F H I J K M

    补题链接:https://codeforces.com/gym/104337 原文链接:https://www.eriktse.com/algorithm/1136.html M. Different ...

  5. 云原生时代崛起的编程语言Go并发编程实战

    @ 目录 概述 基础理论 并发原语 协程-Goroutine 通道-Channel 多路复用-Select 通道使用 超时-Timeout 非阻塞通道操作 关闭通道 通道迭代 定时器-TimerAnd ...

  6. Weblogic11g安装部署-winserver篇

    目录 一.安装weblogic11g 1.1找到下载好的weblogic11g 1.2打开安装程序wls1033_oepe111150_win32.exe,并完成初始化如下图 1.3点击下一步并选择安 ...

  7. Langchain框架 prompt injection注入

    Langchain框架 prompt injection注入 Prompt Injection 是一种攻击技术,黑客或恶意攻击者操纵 AI 模型的输入值,以诱导模型返回非预期的结果 Langchain ...

  8. 5分钟实现调用ChatGPT接口API实现多轮问答

    5分钟实现调用ChatGPT接口API完成多轮问答 最近ChatGPT也是火爆异常啊,在亲自使用了几个月之后,我发现这东西是真的好用,实实在在地提高了生产力.那么对于开发人员来说,有时候可能需要在自己 ...

  9. 2023-03-20:给定一个无向图,保证所有节点连成一棵树,没有环, 给定一个正数n为节点数,所以节点编号为0~n-1,那么就一定有n-1条边, 每条边形式为{a, b, w},意思是a和b之间的无

    2023-03-20:给定一个无向图,保证所有节点连成一棵树,没有环, 给定一个正数n为节点数,所以节点编号为0~n-1,那么就一定有n-1条边, 每条边形式为{a, b, w},意思是a和b之间的无 ...

  10. 2021-09-22:请你判断一个 9x9 的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。数字 1-9 在每一行只能出现一次。数字 1-9 在每一列只能出现一次。数字 1-9

    2021-09-22:请你判断一个 9x9 的数独是否有效.只需要 根据以下规则 ,验证已经填入的数字是否有效即可.数字 1-9 在每一行只能出现一次.数字 1-9 在每一列只能出现一次.数字 1-9 ...