本文差不多算是翻译了一遍 CF blog?id=45223 就是抄了一遍,看不懂可以去原文。

当然我的翻译并不是完全遵从原文的。

Part. 1 Introduction

平时我们怎么求高维前缀和?容斥对吧,复杂度多少?\(\mathcal{O}(n^{d}\times2^{d})\)(\(n\) 每维元素个数,默认同阶,\(d\) 维度)。

这好吗?这不好。

Part. 2 Ying Wen

For 个 example,二维,容斥这么写对吧?

for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++) f[i][j]=f[i-1][j]+f[i][j-1]-f[i-1][j-1]+a[i][j];
}

事实上我们还可以分维来前缀和:

for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++) f[i][j]=f[i-1][j]+a[i][j];
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;++j) f[i][j]=f[i][j-1]+a[i][j];;
}

复杂度多少?\(\mathcal{O}(n^{d}\times d)\),厉害吧。

对应到 SOS DP(sum over subsets),我们把每一维整到集合上去来求子集和。

形式化地定义子集和,即给定一个有 \(2^{n}\) 个元素的数组 \(A\),定义函数:

\[\text{sub-sum}(mask)=\sum_{i\subseteq mask}A_{i}
\]

写成位运算的形式:

\[\text{sub-sum}(mask)=\sum_{mask\text{ & }i=i}A_{i}
\]

学过 FWT 的巨佬可能发现了什么,可是这和我没关系。

看不懂?没关系,我们有严谨的代码定义:

for(int mask = 0;mask < (1<<N); ++mask){
for(int i = 0;i < (1<<N); ++i){
if((mask&i) == i){
F[mask] += A[i];
}
}
}

这是什么垃圾复杂度,用高维前缀和可得以下代码:

for (int j = 0; j < n; ++j) {
for (int i = 0; i < (1 << n); ++i) {
if((i >> j) & 1) f[i] += f[i ^ (1 << j)];
}
}

Note -「SOS DP」高维前缀和的更多相关文章

  1. Note -「动态 DP」学习笔记

    目录 「CF 750E」New Year and Old Subsequence 「洛谷 P4719」「模板」"动态 DP" & 动态树分治 「洛谷 P6021」洪水 「S ...

  2. Note -「Lagrange 插值」学习笔记

    目录 问题引入 思考 Lagrange 插值法 插值过程 代码实现 实际应用 「洛谷 P4781」「模板」拉格朗日插值 「洛谷 P4463」calc 题意简述 数据规模 Solution Step 1 ...

  3. Note -「单位根反演」学习笔记

    \(\mathcal{Preface}\)   单位根反演,顾名思义就是用单位根变换一类式子的形式.有关单位根的基本概念可见我的这篇博客. \(\mathcal{Formula}\)   单位根反演的 ...

  4. Note -「Mobius 反演」光速入门

    目录 Preface 数论函数 积性函数 Dirichlet 卷积 Dirichlet 卷积中的特殊函数 Mobius 函数 & Mobius 反演 Mobius 函数 Mobius 反演 基 ...

  5. Solution -「简单 DP」zxy 讲课记实

    魔法题位面级乱杀. 「JOISC 2020 Day4」治疗计划 因为是不太聪明的 Joker,我就从头开始理思路了.中途也会说一些和 DP 算法本身有关的杂谈,给自己的冗长题解找借口. 首先,治疗方案 ...

  6. 「区间DP」「洛谷P1043」数字游戏

    「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...

  7. 「区间DP」「洛谷PP3146 」[USACO16OPEN]248 G

    [USACO16OPEN]248 G 题目: 题目描述 Bessie likes downloading games to play on her cell phone, even though sh ...

  8. ☆ [HDU2089] 不要62「数位DP」

    类型:数位DP 传送门:>Here< 题意:问区间$[n,m]$的数字中,不含4以及62的数字总数 解题思路 数位DP入门题 先考虑一般的暴力做法,整个区间扫一遍,判断每个数是否合法并累计 ...

  9. 「暑期训练」「基础DP」免费馅饼(HDU-1176)

    题意与分析 中文题就不讲题意了.我是真的菜,菜出声. 不妨思考一下,限制了我们决策的有哪些因素?一,所在的位置:二,所在的时间.还有吗?没有了,所以设dp[i][j]" role=" ...

  10. 「暑期训练」「基础DP」FATE(HDU-2159)

    题意与分析 学习本题的时候遇到了一定的困难.看了题解才知道这是二重背包.本题的实质是二重完全背包.二维费用的背包问题是指:对于每件物品,具有两种不同的费用,选择这件物品必须同时付出这两种代价:对于每种 ...

随机推荐

  1. spring-boot集成mybatis真的很简单吗?

    在日常的后端开发中,使用mybatis作为DAO层的持久框架已经是惯例.但很多时候都是在别人搭好的框架中进行开发,对怎么搭建环境是一知半解,今天就来实践下. 一.集成分哪些步骤 来看下集成mybati ...

  2. #mac安装Homebrew报错问题:curl: (7) Failed to connect to raw.githubusercontent.com port 443: Connection refused

    我们在打开https://brew.sh/index_zh-cn官网的时候都会给你下面这段代码,粘贴复制就可以安装: /bin/bash -c "$(curl -fsSL https://r ...

  3. JavaCV人脸识别三部曲之一:视频中的人脸保存为图片

    欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 关于人脸识别 本文是<JavaCV人脸识别三部曲 ...

  4. 基于JavaFX的扫雷游戏实现(三)——交互逻辑

      相信阅读过上期文章,动手能力强的朋友们已经自己跑出来界面了.所以这期我要讲的是交互部分,也就是对于鼠标点击事件的响应,包括计时计数对点击事件以及一些状态量的影响.   回忆下第一期介绍的扫雷规则和 ...

  5. ES插入数据(JAVA代码)

    创建ES连接 // 初始化api客户端 public static RestHighLevelClient client = new RestHighLevelClient( RestClient.b ...

  6. MIT6.s081/6.828 lectrue1:Introduction and examples

    目前课程官网能够查到 2020,2021.2022 秋季的课程表,但是视频都是 2020 年录制的那一版 简单复习+回顾下自己的 OS 学习之旅 参考资料: 官网:https://pdos.csail ...

  7. Mysql基础8-多表查询

    一.多表关系 一对多或者多对一 案例:部门与员工的关系 关系:一个部门对应多个员工,一个员工对应一个部门(不考虑跨部门的特殊情况) 实现:在多的一方建立外键,指向一的一方的主键,这里员工表是多的的一方 ...

  8. Linux0.11内核笔记(-)

    基础知识 C语言.汇编知识.嵌入式汇编.x86处理器和编程的相关知识和.UNIX操作系统设计 Linus在最初开发Linux操作系统时参考了MINIX操作系统:<操作系统:设计与实现>一种 ...

  9. 自定义gradle插件并且发布到本地仓库

    转载请标明出处,维权必究:http://77blogs.com/?p=189 一.在工程上新建一个Module. 二.删除其余不必要的文件,最终目录结构如下: 注意:由于我用的是kotlin语言,所以 ...

  10. 使用JDK自带工具调优JVM的常用命令

    前言 对于Java进程常见问题,可以通过JVM监控工具(比如Prometheus).Arthas等,或者使用JDK自带的工具.如果第三方监控工具线上没有的话,对jdk自带的工具就要多熟悉熟悉. 线上J ...