题目传送门

现在看来熊猫杯的J题原来是个容斥套路题,按照值域排序后根据值域划分方块数,枚举子集容斥计算即可。

#include<cstdio>
#include<algorithm>
using namespace std;
const int p = 1e9 + 7;
const int N = 1100; struct Matrix{
int x, y, x1, y1, v; bool check() { return (x <= x1) && (y <= y1); }
int cal() { return (x1 - x + 1) * (y1 - y + 1); }
void read() { scanf("%d%d%d%d%d", &x, &y, &x1, &y1, &v); } bool operator <(const Matrix &ret) { return v < ret.v; } void operator |(const Matrix &ret){
x = max(x, ret.x), y = max(y, ret.y);
x1 = min(x1, ret.x1), y1 = min(y1, ret.y1);
}
}mat[15]; int h, w, n, m;
int s[N], u[N], num[N]; int qpow(int x, int k){
int ans = 1;
for(; k; k >>= 1){
if(k & 1) ans = 1LL * ans * x % p;
x = 1LL * x * x % p;
}
return ans;
} void solve(){
scanf("%d%d%d%d", &h, &w, &m, &n);
for(int i = 1; i <= n; ++i) mat[i].read();
sort(mat + 1, mat + 1 + n);
// 求交集
for(int i = 1, up = 1 << n; i < up; ++i){
Matrix tt = {1, 1, h, w, 0};
for(int t = i, j = 1; t; t >>= 1, ++j){
if(t & 1) tt | mat[j];
}
if(tt.check()) s[i] = tt.cal();
}
// 求并集
for(int i = 1, up = 1 << n; i < up; ++i){
for(int t = i; t; t = (t - 1) & i){
if(num[t] & 1) u[i] += s[t];
else u[i] -= s[t];
}
}
// 划分值域容斥计算
// now是目前枚举的集合,pre是之前枚举过的集合
int now = 0, pre = 0, ans = 1;
for(int i = 1; i <= n; ++i){
now |= (1 << (i - 1));
if(mat[i].v == mat[i + 1].v) continue;
int res = u[now | pre] - u[pre];
int sum = qpow(mat[i].v, res);
for(int t = now; t; t = (t - 1) & now){
int tot = u[t | pre] - u[pre];
int del = 1LL * qpow(mat[i].v - 1, tot) * qpow(mat[i].v, res - tot) % p;
if(num[t] & 1) sum = (sum - del + p) % p;
else sum = (sum + del) % p;
}
ans = 1LL * ans * sum % p;
pre |= now;
now = 0;
}
printf("%d\n", 1LL * ans * qpow(m, h * w - u[(1 << n) - 1]) % p);
} void clr(){
for(int i = 0; i < N; ++i) s[i] = u[i] = 0;
} int main(){
int T;
scanf("%d", &T);
for(int i = 1; i < N; ++i) num[i] = num[i >> 1] + (i & 1);
while(T--){
solve();
clr();
}
}

[FJOI2017]矩阵填数 (容斥原理)的更多相关文章

  1. P3813 [FJOI2017]矩阵填数(组合数学)

    P3813 [FJOI2017]矩阵填数 shadowice1984说:看到计数想容斥........ 这题中,我们把图分成若干块,每块的最大值域不同 蓝后根据乘法原理把每块的方案数(互不相干)相乘. ...

  2. [BZOJ5010][FJOI2017]矩阵填数(状压DP)

    5010: [Fjoi2017]矩阵填数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 90  Solved: 45[Submit][Status][ ...

  3. [FJOI2017]矩阵填数——容斥

    参考:题解 P3813 [[FJOI2017]矩阵填数] 题目大意: 给定一个 h∗w 的矩阵,矩阵的行编号从上到下依次为 1...h ,列编号从左到右依次 1...w . 在这个矩阵中你需要在每个格 ...

  4. [luogu P3813] [FJOI2017] 矩阵填数 解题报告 (容斥原理)

    题目链接: https://www.luogu.org/problemnew/show/P3813 题目: 给定一个 h*w的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w. ...

  5. bzoj5010: [Fjoi2017]矩阵填数

    Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...

  6. bzoj 5010: [Fjoi2017]矩阵填数

    Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...

  7. BZOJ5010 FJOI2017矩阵填数(容斥原理)

    如果只考虑某个子矩阵的话,其最大值为v的方案数显然是vsize-(v-1)size.问题在于处理子矩阵间的交叉情况. 如果两个交叉的子矩阵所要求的最大值不同,可以直接把交叉部分划给所要求的最大值较小的 ...

  8. 【BZOJ】5010: [Fjoi2017]矩阵填数

    [算法]离散化+容斥原理 [题意]给定大矩阵,可以每格都可以任意填1~m,给定n个子矩阵,要求满足子矩阵内的最大值为vi,求方案数. n<=10,h,w<=1w. [题解] 此题重点之一在 ...

  9. P3813 [FJOI2017]矩阵填数

    传送门 矩阵很大,但是发现 $n$ 很小,从这边考虑,对于一个一堆小矩阵放在一起的情况 考虑把每一块单独考虑然后方案再乘起来 但是这些奇怪的东西很不好考虑 所以暴力一点,直接拆成一个个小块 但是这样我 ...

  10. [FJOI2017]矩阵填数

    [Luogu3813] [LOJ2280] 写得很好的题解 \(1.\)离散化出每一块内部不互相影响的块 \(2.\)\(dp[i][j]\)为前 \(i\) 种重叠块其中有 \(j\) 这些状态的矩 ...

随机推荐

  1. 处理css/js兼容性的工具之超重要的browserslist

    这篇 webpack处理css资源 文章中使用到的工具 browserslist 对于兼容性处理来说非常重要!这一篇来仔细说说. 查询兼容性 不同浏览器对于 css / js 的属性可能存在兼容性,具 ...

  2. Json 基于类 Newtonsoft.Json.Linq.JToken 的应用简介【C# 基础】

    〇.前言 在日常开发中,对于 Json 的使用还是比较频繁的,特别是 Json 对象和字符串或者实体对象之间的转换. 虽然几乎天天用,但是总是感觉没那么明了,今天结合微软的 Newtonsoft.Js ...

  3. 搞懂 Vue3 中的各种 ref:toRef,toRefs,isRef,unref...

    在 Vue3 中,有许多与响应式相关的函数,例如 toRef.toRefs.isRef.unref 等等.合理地使用这些函数可以在实际开发中大大提高效率.本文将详细介绍这些函数的用法,让我们在实际开发 ...

  4. 一文解锁vue3中hooks的使用姿势

    vue3 中的 hooks 是什么? 简单来说如果你的函数中用到了诸如 ref,reactive,onMounted 等 vue 提供的 api 的话,那么它就是一个 hooks 函数,如果没用到它就 ...

  5. vue2原理初探-数据代理和数据劫持

    本篇文章主要想简单聊聊vue如何实现数据修改,页面联动的底层原理. 当然,篇幅有限,只是自己一些浅显的认知而已,我会从一下几个方面去聊,希望对你有所帮助. 几个基础知识点 数据代理 数据劫持 完整de ...

  6. Redis漏洞总结--未授权--沙箱绕过--(CNVD-2015-07557)&&(CNVD-2019-21763)&&(CVE-2022-0543)

    Redis未授权--沙箱绕过--(CNVD-2015-07557)&&(CNVD-2019-21763)&&(CVE-2022-0543) 环境复现 采用Vulfocu ...

  7. elmentui表单重置初始值问题与解决方法

    背景 在做管理台项目时,我们会经常使用到表单+表格+弹窗表单的组合,以完成对数据的增.删.查.改. 在vue2+elementui项目中,使用弹窗dialog+表单form,实现对数据的添加和修改. ...

  8. 【RocketMQ】DLedger模式下的选主流程分析

    RocketMQ 4.5版本之前,可以采用主从架构进行集群部署,但是如果master节点挂掉,不能自动在集群中选举出新的Master节点,需要人工介入,在4.5版本之后提供了DLedger模式,使用R ...

  9. RK3588平台产测之ArmSoM产品低温环境测试

    1. 简介 专栏总目录 ArmSoM团队在产品量产之前都会对产品做几次专业化的功能测试以及性能压力测试,以此来保证产品的质量以及稳定性 优秀的产品都要进行严苛的多次全方位的功能测试以及性能压力测试才能 ...

  10. python-显示张量(tensorflow)的具体的值

    ------------恢复内容开始------------ # 方法1 a = tf. random.normal ([4,4],mean=0.1,stddev=1) with tf.Session ...