golang、JS AES(CBC模式)加密解密兼容
原文地址:
https://www.cnblogs.com/haima/p/12611372.html
golang、JS AES(CBC模式)加密解密兼容
golang代码
package crypto
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"encoding/hex"
"errors"
"fmt"
)
//参考文档
//http://www.topgoer.com/%E5%85%B6%E4%BB%96/%E5%8A%A0%E5%AF%86%E8%A7%A3%E5%AF%86/%E5%8A%A0%E5%AF%86%E8%A7%A3%E5%AF%86.html
//高级加密标准(Adevanced Encryption Standard ,AES)
//16,24,32位字符串的话,分别对应AES-128,AES-192,AES-256 加密方法
//key不能泄露
//var PwdKey = []byte("DIS**#KKKDJJSKDI")
var PwdKey = "linkbook1qaz*WSX"
//PKCS7 填充模式
func PKCS7Padding(ciphertext []byte, blockSize int) []byte {
padding := blockSize - len(ciphertext)%blockSize
//Repeat()函数的功能是把切片[]byte{byte(padding)}复制padding个,然后合并成新的字节切片返回
padtext := bytes.Repeat([]byte{byte(padding)}, padding)
return append(ciphertext, padtext...)
}
//填充的反向操作,删除填充字符串
func PKCS7UnPadding1(origData []byte) ([]byte, error) {
//获取数据长度
length := len(origData)
if length == 0 {
return nil, errors.New("加密字符串错误!")
} else {
//获取填充字符串长度
unpadding := int(origData[length-1])
//截取切片,删除填充字节,并且返回明文
return origData[:(length - unpadding)], nil
}
}
//实现加密
func AesEcrypt(origData []byte, key []byte) ([]byte, error) {
//创建加密算法实例
block, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
//获取块的大小
blockSize := block.BlockSize()
//对数据进行填充,让数据长度满足需求
origData = PKCS7Padding(origData, blockSize)
//采用AES加密方法中CBC加密模式
blocMode := cipher.NewCBCEncrypter(block, key[:blockSize])
crypted := make([]byte, len(origData))
//执行加密
blocMode.CryptBlocks(crypted, origData)
return crypted, nil
}
//实现解密
func AesDeCrypt(cypted []byte, key []byte) (string, error) {
//创建加密算法实例
block, err := aes.NewCipher(key)
if err != nil {
return "", err
}
//获取块大小
blockSize := block.BlockSize()
//创建加密客户端实例
blockMode := cipher.NewCBCDecrypter(block, key[:blockSize])
origData := make([]byte, len(cypted))
//这个函数也可以用来解密
blockMode.CryptBlocks(origData, cypted)
//去除填充字符串
origData, err = PKCS7UnPadding1(origData)
if err != nil {
return "", err
}
return string(origData), err
}
//加密base64
func EnPwdCode(pwdStr string) string {
pwd := []byte(pwdStr)
result, err := AesEcrypt(pwd, []byte(PwdKey))
if err != nil {
return ""
}
return hex.EncodeToString(result)
}
//解密
func DePwdCode(pwd string) string {
temp, _ := hex.DecodeString(pwd)
//执行AES解密
res, _:=AesDeCrypt(temp, []byte(PwdKey))
return res
}
func main() {
//aes加密
destring:=`{"name":"菜鸟教程11","site":"http://www.runoob.com"}`
deStr := EnPwdCode(destring)
fmt.Println(deStr) //4f4d74c15e0ad4afb323a17927b1176ecb0c95ecbdf8e776ceb093499e3ff4c45157b007ae7dff1688ac2d2bf9fef28644922a1b3bbc6ef5881cb1ed0dff298a
//aes解密
decodeStr := DePwdCode("4f4d74c15e0ad4afb323a17927b1176ecb0c95ecbdf8e776ceb093499e3ff4c45157b007ae7dff1688ac2d2bf9fef28644922a1b3bbc6ef5881cb1ed0dff298a")
fmt.Println(decodeStr) //{"name":"菜鸟教程11","site":"http://www.runoob.com"}
}
前端javascript的代码
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Title</title>
</head>
<script src="./aes.js"></script>
<body>
<script>
// var key1 = "1234567887654321";
var key1 = "linkbook1qaz*WSX";
// var plaintText = '"name"="lisi",age=18'; // 明文
var str = {
name: "菜鸟教程11",
site: "http://www.runoob.com"
}
var plaintText = JSON.stringify(str)
console.log(plaintText)
endata = encodeAes(plaintText)
//加密
function encodeAes(plaintTextStr) {
var key = CryptoJS.enc.Utf8.parse(key1);
var encryptedData = CryptoJS.AES.encrypt(plaintText, key, {
iv: key,
mode: CryptoJS.mode.CBC,
padding: CryptoJS.pad.Pkcs7
});
// console.log("加密前:" + plaintText);
// console.log("加密后:" + encryptedData); //Pkcs7: WoCzvm6eZiM4/bx5o/CzGw==
// console.log("加密后 base64:" + encryptedData.ciphertext.toString(CryptoJS.enc.Base64));
encryptedData = encryptedData.ciphertext.toString();
console.log("加密后-no-hex:" + encryptedData);
return encryptedData
}
// 解密
endata1 = "46ce4f5bb33896c4c75a24a46c6f16c32991228f40831003b98acffe41fee255f892d68283b8a1b07a4dfd66622b6c50685854e918ac059d5d8e969b3b105c6b";
decodeAes(endata1)
function decodeAes(encryptedDataStr) {
var key = CryptoJS.enc.Utf8.parse(key1);
var encryptedHexStr = CryptoJS.enc.Hex.parse(encryptedDataStr);
// console.log("解密前hex:" + encryptedHexStr);
var encryptedBase64Str = CryptoJS.enc.Base64.stringify(encryptedHexStr);
// console.log("解密前:" + encryptedBase64Str);
var decryptedData = CryptoJS.AES.decrypt(encryptedBase64Str, key, {
iv: key,
mode: CryptoJS.mode.CBC,
padding: CryptoJS.pad.Pkcs7
});
var decryptedStr = decryptedData.toString(CryptoJS.enc.Utf8);
console.log("解密后:" + decryptedStr);
}
</script>
</body>
</html>
aes.js
github下载地址:
https://github.com/brix/crypto-js/blob/develop/src/aes.js
(function () {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var BlockCipher = C_lib.BlockCipher;
var C_algo = C.algo;
// Lookup tables
var SBOX = [];
var INV_SBOX = [];
var SUB_MIX_0 = [];
var SUB_MIX_1 = [];
var SUB_MIX_2 = [];
var SUB_MIX_3 = [];
var INV_SUB_MIX_0 = [];
var INV_SUB_MIX_1 = [];
var INV_SUB_MIX_2 = [];
var INV_SUB_MIX_3 = [];
// Compute lookup tables
(function () {
// Compute double table
var d = [];
for (var i = 0; i < 256; i++) {
if (i < 128) {
d[i] = i << 1;
} else {
d[i] = (i << 1) ^ 0x11b;
}
}
// Walk GF(2^8)
var x = 0;
var xi = 0;
for (var i = 0; i < 256; i++) {
// Compute sbox
var sx = xi ^ (xi << 1) ^ (xi << 2) ^ (xi << 3) ^ (xi << 4);
sx = (sx >>> 8) ^ (sx & 0xff) ^ 0x63;
SBOX[x] = sx;
INV_SBOX[sx] = x;
// Compute multiplication
var x2 = d[x];
var x4 = d[x2];
var x8 = d[x4];
// Compute sub bytes, mix columns tables
var t = (d[sx] * 0x101) ^ (sx * 0x1010100);
SUB_MIX_0[x] = (t << 24) | (t >>> 8);
SUB_MIX_1[x] = (t << 16) | (t >>> 16);
SUB_MIX_2[x] = (t << 8) | (t >>> 24);
SUB_MIX_3[x] = t;
// Compute inv sub bytes, inv mix columns tables
var t = (x8 * 0x1010101) ^ (x4 * 0x10001) ^ (x2 * 0x101) ^ (x * 0x1010100);
INV_SUB_MIX_0[sx] = (t << 24) | (t >>> 8);
INV_SUB_MIX_1[sx] = (t << 16) | (t >>> 16);
INV_SUB_MIX_2[sx] = (t << 8) | (t >>> 24);
INV_SUB_MIX_3[sx] = t;
// Compute next counter
if (!x) {
x = xi = 1;
} else {
x = x2 ^ d[d[d[x8 ^ x2]]];
xi ^= d[d[xi]];
}
}
}());
// Precomputed Rcon lookup
var RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];
/**
* AES block cipher algorithm.
*/
var AES = C_algo.AES = BlockCipher.extend({
_doReset: function () {
var t;
// Skip reset of nRounds has been set before and key did not change
if (this._nRounds && this._keyPriorReset === this._key) {
return;
}
// Shortcuts
var key = this._keyPriorReset = this._key;
var keyWords = key.words;
var keySize = key.sigBytes / 4;
// Compute number of rounds
var nRounds = this._nRounds = keySize + 6;
// Compute number of key schedule rows
var ksRows = (nRounds + 1) * 4;
// Compute key schedule
var keySchedule = this._keySchedule = [];
for (var ksRow = 0; ksRow < ksRows; ksRow++) {
if (ksRow < keySize) {
keySchedule[ksRow] = keyWords[ksRow];
} else {
t = keySchedule[ksRow - 1];
if (!(ksRow % keySize)) {
// Rot word
t = (t << 8) | (t >>> 24);
// Sub word
t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];
// Mix Rcon
t ^= RCON[(ksRow / keySize) | 0] << 24;
} else if (keySize > 6 && ksRow % keySize == 4) {
// Sub word
t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];
}
keySchedule[ksRow] = keySchedule[ksRow - keySize] ^ t;
}
}
// Compute inv key schedule
var invKeySchedule = this._invKeySchedule = [];
for (var invKsRow = 0; invKsRow < ksRows; invKsRow++) {
var ksRow = ksRows - invKsRow;
if (invKsRow % 4) {
var t = keySchedule[ksRow];
} else {
var t = keySchedule[ksRow - 4];
}
if (invKsRow < 4 || ksRow <= 4) {
invKeySchedule[invKsRow] = t;
} else {
invKeySchedule[invKsRow] = INV_SUB_MIX_0[SBOX[t >>> 24]] ^ INV_SUB_MIX_1[SBOX[(t >>> 16) & 0xff]] ^
INV_SUB_MIX_2[SBOX[(t >>> 8) & 0xff]] ^ INV_SUB_MIX_3[SBOX[t & 0xff]];
}
}
},
encryptBlock: function (M, offset) {
this._doCryptBlock(M, offset, this._keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX);
},
decryptBlock: function (M, offset) {
// Swap 2nd and 4th rows
var t = M[offset + 1];
M[offset + 1] = M[offset + 3];
M[offset + 3] = t;
this._doCryptBlock(M, offset, this._invKeySchedule, INV_SUB_MIX_0, INV_SUB_MIX_1, INV_SUB_MIX_2, INV_SUB_MIX_3, INV_SBOX);
// Inv swap 2nd and 4th rows
var t = M[offset + 1];
M[offset + 1] = M[offset + 3];
M[offset + 3] = t;
},
_doCryptBlock: function (M, offset, keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX) {
// Shortcut
var nRounds = this._nRounds;
// Get input, add round key
var s0 = M[offset] ^ keySchedule[0];
var s1 = M[offset + 1] ^ keySchedule[1];
var s2 = M[offset + 2] ^ keySchedule[2];
var s3 = M[offset + 3] ^ keySchedule[3];
// Key schedule row counter
var ksRow = 4;
// Rounds
for (var round = 1; round < nRounds; round++) {
// Shift rows, sub bytes, mix columns, add round key
var t0 = SUB_MIX_0[s0 >>> 24] ^ SUB_MIX_1[(s1 >>> 16) & 0xff] ^ SUB_MIX_2[(s2 >>> 8) & 0xff] ^ SUB_MIX_3[s3 & 0xff] ^ keySchedule[ksRow++];
var t1 = SUB_MIX_0[s1 >>> 24] ^ SUB_MIX_1[(s2 >>> 16) & 0xff] ^ SUB_MIX_2[(s3 >>> 8) & 0xff] ^ SUB_MIX_3[s0 & 0xff] ^ keySchedule[ksRow++];
var t2 = SUB_MIX_0[s2 >>> 24] ^ SUB_MIX_1[(s3 >>> 16) & 0xff] ^ SUB_MIX_2[(s0 >>> 8) & 0xff] ^ SUB_MIX_3[s1 & 0xff] ^ keySchedule[ksRow++];
var t3 = SUB_MIX_0[s3 >>> 24] ^ SUB_MIX_1[(s0 >>> 16) & 0xff] ^ SUB_MIX_2[(s1 >>> 8) & 0xff] ^ SUB_MIX_3[s2 & 0xff] ^ keySchedule[ksRow++];
// Update state
s0 = t0;
s1 = t1;
s2 = t2;
s3 = t3;
}
// Shift rows, sub bytes, add round key
var t0 = ((SBOX[s0 >>> 24] << 24) | (SBOX[(s1 >>> 16) & 0xff] << 16) | (SBOX[(s2 >>> 8) & 0xff] << 8) | SBOX[s3 & 0xff]) ^ keySchedule[ksRow++];
var t1 = ((SBOX[s1 >>> 24] << 24) | (SBOX[(s2 >>> 16) & 0xff] << 16) | (SBOX[(s3 >>> 8) & 0xff] << 8) | SBOX[s0 & 0xff]) ^ keySchedule[ksRow++];
var t2 = ((SBOX[s2 >>> 24] << 24) | (SBOX[(s3 >>> 16) & 0xff] << 16) | (SBOX[(s0 >>> 8) & 0xff] << 8) | SBOX[s1 & 0xff]) ^ keySchedule[ksRow++];
var t3 = ((SBOX[s3 >>> 24] << 24) | (SBOX[(s0 >>> 16) & 0xff] << 16) | (SBOX[(s1 >>> 8) & 0xff] << 8) | SBOX[s2 & 0xff]) ^ keySchedule[ksRow++];
// Set output
M[offset] = t0;
M[offset + 1] = t1;
M[offset + 2] = t2;
M[offset + 3] = t3;
},
keySize: 256/32
});
/**
* Shortcut functions to the cipher's object interface.
*
* @example
*
* var ciphertext = CryptoJS.AES.encrypt(message, key, cfg);
* var plaintext = CryptoJS.AES.decrypt(ciphertext, key, cfg);
*/
C.AES = BlockCipher._createHelper(AES);
}());
golang、JS AES(CBC模式)加密解密兼容的更多相关文章
- Android DES加密的CBC模式加密解密和ECB模式加密解密
DES加密共有四种模式:电子密码本模式(ECB).加密分组链接模式(CBC).加密反馈模式(CFB)和输出反馈模式(OFB). CBC模式加密: import java.security.Key; i ...
- 通过Jni实现AES的CBC模式加密解密
AES加密方式基本实现,出现一个问题就是代码的安全性.我们知道java层代码很容易被反编译,很有可能泄漏我们加密方式与密钥 内容,那我们该怎么办呢?我们可以使用c/c++实现加密,编译成So库的形式, ...
- php实现AES/CBC/PKCS5Padding加密解密(又叫:对称加密)
今天在做一个和java程序接口的架接,java那边需要我这边(PHP)对传过去的值进行AES对称加密,接口返回的结果也是加密过的(就要用到解密),然后试了很多办法,也一一对应了AES的key密钥值,偏 ...
- python 实现 AES CBC模式加解密
AES加密方式有五种:ECB, CBC, CTR, CFB, OFB 从安全性角度推荐CBC加密方法,本文介绍了CBC,ECB两种加密方法的python实现 python 在 Windows下使用AE ...
- 解决AES算法CBC模式加密字符串后再解密出现乱码问题
问题 在使用 AES CBC 模式加密字符串后,再进行解密,解密得到的字符串出现乱码情况,通常都是前几十个字节乱码: 复现 因为是使用部门 cgi AESEncryptUtil 库,找到问题后,在这里 ...
- php AES cbc模式 pkcs7 128位加密解密(微信小程序)
PHP AES CBC模式PKCS7 128位加密 加密: $key = '1234567812345678'; $iv = '1234567890123456'; $message = '12345 ...
- PHP AES cbc模式 pkcs7 128加密解密
今天在对接一个第三方接口的时候,对方需要AES CBC模式下的加密.这里简单写一个demo class Model_Junjingbao extends Model { private static ...
- Python实现AES的CBC模式加密和解密过程详解 和 chr() 函数 和 s[a:b:c] 和函数lambda
1.chr()函数 chr() 用一个范围在 range(256)内的(就是0-255)整数作参数,返回一个对应的字符. 2.s[a:b:c] s=(1,2,3,4,5) 1>. s[a]下标访 ...
- golang AES/ECB/PKCS5 加密解密 url-safe-base64
因为项目的需要用到golang的一种特殊的加密解密算法AES/ECB/PKCS5,但是算法并没有包含在标准库中,经过多次失败的尝试,终于解码成功,特此分享: /* 描述 : golang AES/EC ...
- 微信小程序aes前后端加密解密交互
aes前后端加密解密交互 小程序端 1. 首先引入aes.js /** * [description] CryptoJS v3.1.2 * [description] zhuangzhudada so ...
随机推荐
- KingabseES例程之巧用QueryMapping解决查询硬解析问题
什么是QueryMapping KingbaseES Query Mapping 是一种查询映射功能.有过SQL优化经历的人都知道,对于有些SQL性能问题,可能需要涉及到SQL层面的修改,这不仅麻烦, ...
- #贪心#洛谷 6927 [ICPC2016 WF]Swap Space
题目 分析 可以发现能将硬盘容量变大的优先,这种硬盘就是以格式化前的大小升序排序. 然后如果硬盘容量变小,那就是先填格式化后较大的硬盘(因为装完可以提供较大的空间) 代码 #include <c ...
- #状压dp,贪心#CF1316E Team Building
题目 为了组织一支排球队,你需要为队伍里的\(p\)个不同的位置,从\(n\)个人中选出\(p\)个人, 且每个位置上都恰好有一个人.另外还需要从剩下的人中选出恰好\(k\)个人作为观众. 对于第\( ...
- 【中秋国庆不断更】OpenHarmony多态样式stateStyles使用场景
@Styles和@Extend仅仅应用于静态页面的样式复用,stateStyles可以依据组件的内部状态的不同,快速设置不同样式.这就是我们本章要介绍的内容stateStyles(又称为:多态样式). ...
- 深入理解 Spring IoC 和 DI:掌握控制反转和依赖注入的精髓
在本文中,我们将介绍 IoC(控制反转)和 DI(依赖注入)的概念,以及如何在 Spring 框架中实现它们. 什么是控制反转? 控制反转是软件工程中的一个原则,它将对象或程序的某些部分的控制权转移给 ...
- RabbitMQ 07 发布订阅模式
发布订阅模式 发布订阅模式结构图: 比如信用卡还款日临近了,那么就会给手机.邮箱发送消息,提示需要去还款了,但是手机短信和邮件发送并不一定是同一个业务提供的,但是现在又希望能够都去执行,就可以用到发布 ...
- std::thread 二:互斥量(lock() & unlock())
mutex 互斥量的作用是保护共享数据 *:有 lock() 就一定要有 unlock() #include <iostream> #include <thread> # ...
- 重新整理 .net core 实践篇—————应用层[三十]
前言 简单介绍一下应用层. 正文 应用层用来做什么的呢? 应用层用来做处理api请求的. [HttpPost] public Task<long> CreateOrder([FromBod ...
- i-MES生产制造管理系统-老化时间管控
在生产过程中,产品的可靠性是影响其性能和寿命的关键因素,因此提高产品的可靠性是十分必要的,而老化测试是提高产品可靠性的重要手段之一,老化的时间随着产品不同而变化,因此老化时间管控变得尤为重要! 在ME ...
- 【编程】C++ 常用容器以及一些应用案例
介绍一些我常用的C++容器和使用方法,以及使用案例.blog 1 概述 容器(Container)是一个存储其他对象集合的持有者对象.容器以类模板实现,对支持的元素类型有很大的灵活性.容器管理元素的存 ...