图的全局最小割的Stoer-Wagner算法及例题
Stoer-Wagner算法基本思想:如果能求出图中某两个顶点之间的最小割,更新答案后合并这两个顶点继续求最小割,到最后就得到答案。
算法步骤:
-------------------------------------------------------------------------------------------------------------------------
(1)首先初始化,设最小割ans = INF |
(2)任选一个顶点u加入集合S,定义W(S,p)为S中的所有点到S外一点p的权值总和 |
(3)根据选定的u更新W(S,p)的值 |
(4)选出W(S,p)中值最大的点作为新的S,若S=G(V),则继续步骤(3) |
(5)最后进入S的两点s,t,用W(S,t)更新ans的值 |
(6)新建顶点c,边权w(c,v) = w(s,v)+w(t,v),删除顶点s,t及其相连的边 |
(7)若|V| > 1,则继续步骤(2) |
-------------------------------------------------------------------------------------------------------------------------
步骤(2)-(5)就是找出两个顶点,并求出它们的最小割W(S,t),步骤(6)是删除这两个顶点,重复操作,直至顶点数变为1
复杂度:O(n^3)
例题: POJ 2914 Minimum Cut
裸的最小割
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#define Mod 1000000007
using namespace std;
#define N 506 int dis[N],node[N];
int ans;
int mp[N][N];
int vis[N]; int Sto_Wag(int n)
{
int maxi,pre,m;
int i,j;
for(i=;i<=n;i++)
node[i] = i;
while(n > )
{
m = -,maxi = ;
for(i=;i<=n;i++)
{
dis[node[i]] = mp[node[]][node[i]];
vis[node[i]] = ;
if(dis[node[i]] > m)
{
m = dis[node[i]];
maxi = i;
}
}
pre = ;
vis[node[]] = ;
for(j=;j<=n;j++)
{
vis[node[maxi]] = ;
if(j == n)
{
ans = min(ans,m);
for(i=;i<=n;i++)
{
mp[node[pre]][node[i]] += mp[node[maxi]][node[i]];
mp[node[i]][node[pre]] += mp[node[maxi]][node[i]];
}
node[maxi] = node[n--];
}
else
{
pre = maxi;
m = -;
for(i=;i<=n;i++)
{
if(!vis[node[i]])
{
dis[node[i]] += mp[node[pre]][node[i]];
if(dis[node[i]] > m)
{
m = dis[node[i]];
maxi = i;
}
}
}
}
}
}
return ;
} int main()
{
int n,m,u,v,w;
while(scanf("%d%d",&n,&m)!=EOF)
{
ans = Mod;
memset(mp,,sizeof(mp));
while(m--)
{
scanf("%d%d%d",&u,&v,&w);
u++,v++;
mp[u][v] += w;
mp[v][u] += w;
}
Sto_Wag(n);
printf("%d\n",ans);
}
return ;
}
图的全局最小割的Stoer-Wagner算法及例题的更多相关文章
- ZOJ 2753 Min Cut (Destroy Trade Net)(无向图全局最小割)
题目大意 给一个无向图,包含 N 个点和 M 条边,问最少删掉多少条边使得图分为不连通的两个部分,图中有重边 数据范围:2<=N<=500, 0<=M<=N*(N-1)/2 做 ...
- 全局最小割StoerWagner算法详解
前言 StoerWagner算法是一个找出无向图全局最小割的算法,本文需要读者有一定的图论基础. 本文大部分内容与词汇来自参考文献(英文,需***),用兴趣的可以去读一下文献. 概念 无向图的割:有无 ...
- poj 2914(stoer_wanger算法求全局最小割)
题目链接:http://poj.org/problem?id=2914 思路:算法基于这样一个定理:对于任意s, t V ∈ ,全局最小割或者等于原图的s-t 最小割,或者等于将原图进行 Cont ...
- POJ 2914 Minimum Cut Stoer Wagner 算法 无向图最小割
POJ 2914 题意:给定一个无向图 小于500节点,和边的权值,求最小的代价将图拆为两个联通分量. Stoer Wagner算法: (1)用类似prim算法的方法求"最大生成树" ...
- 全局最小割Stoer-Wagner算法
借鉴:http://blog.kongfy.com/2015/02/kargermincut/ 提到无向图的最小割问题,首先想到的就是Ford-Fulkerson算法解s-t最小割,通过Edmonds ...
- HDU 6081 度度熊的王国战略(全局最小割Stoer-Wagner算法)
Problem Description 度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族. 哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士. 所以这一场战争,将会十分艰难. 为了更 ...
- 求全局最小割(SW算法)
hdu3002 King of Destruction Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
- POJ 2914 Minimum Cut (全局最小割)
[题目链接] http://poj.org/problem?id=2914 [题目大意] 求出一个最小边割集,使得图不连通 [题解] 利用stoerwagner算法直接求出全局最小割,即答案. [代码 ...
- HDU 3691 Nubulsa Expo(全局最小割Stoer-Wagner算法)
Problem Description You may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa ...
随机推荐
- 【初探移动前端开发04】jQuery Mobile (中)
前言 昨天我们一起学习了一部分jquery mobile的知识,今天我们继续. 这些是些很基础的东西,有朋友觉得这个没有其它的好,但是学习下不吃亏嘛,我反正也不会一起学习基础啦. 例子请使用手机查看哦 ...
- JavaScript中对象的比较
Javascript中有'=='和'==='两种相等比较,后者是全等,会判断数据类型,前者是相等,在比较时,会发生隐式转换. 如果将两个对象做'=='比较,结果会如何呢? 比如有如下两个对象: var ...
- SharePoint 2013 Silverlight中使用Net客户端对象模型
1.创建Silverlight时,选择Silverlight 4,不要选择版本5,试了很久版本5都调用不了,自己也不知道什么原因,谷歌也没找到答案,后来尝试版本4,可以调用: 至于Host the S ...
- 操作系统开发系列—12.b.从Loader跳入保护模式
现在,内核已经被我们加载进内存了,该是跳入保护模式的时候了. 首先是GDT以及对应的选择子,我们只定义三个描述符,分别是一个0~4GB的可执行段.一个0~4GB的可读写段和一个指向显存开始地址的段: ...
- UILabel用法
// UILabel -> UIView // UILabel用来显示文字内容 //创建一个Label,一般都直接通过initWithFrame确定位置跟大小 UILabel *lb = [[U ...
- Android 网络HTML查看器
本文实现一个基于Android的网络HTML查看器 新建项目,项目布局文件如下: <LinearLayout xmlns:android="http://schemas.android ...
- Android点击空白处,隐藏软键盘
在做登陆或者注册的时候,软键盘经常可能会挡住一些界面.我们需要在输入完成之后隐藏软键盘. 在我们点击空白处或者非EditText的地方来隐藏软键盘. public class HomeActivity ...
- 利用Scala语言开发Spark应用程序
Spark内核是由Scala语言开发的,因此使用Scala语言开发Spark应用程序是自然而然的事情.如果你对Scala语言还不太熟悉,可 以阅读网络教程A Scala Tutorial for Ja ...
- jquery.validate 验证机制
jquery.validate 验证机制 金刚 juqery juqery.validate 在开发系统时,使用了jquery.validate.js 这个验证插件,来校验数据合法性 重点 验证是以i ...
- MySQL分表自增ID解决方案
当我们对MySQL进行分表操作后,将不能依赖MySQL的自动增量来产生唯一ID了,因为数据已经分散到多个表中. 应尽量避免使用自增IP来做为主键,为数据库分表操作带来极大的不便. 在postgreSQ ...