Description

  作为体育委员,C君负责这次运动会仪仗队的训练。仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图)。       现在,C君希望你告诉他队伍整齐时能看到的学生人数。

Input

  共一个数N。

Output

  共一个数,即C君应看到的学生人数。

Sample Input

  4

Sample Output

  9

HINT

【数据规模和约定】   对于 100% 的数据,1 ≤ N ≤ 40000

Source

思路:看图,是对称的,以对角线为对称轴分开,先不看特殊的三个点,计算发现行上的点满足欧拉函数,于是线性筛求2~n-1欧拉函数即可,最后别忘了对称和特殊的三个点。时间10sec不线性筛也行?
 #include <iostream>
#include <cstdio>
#include <cstring>
#define N 40000
using namespace std;
int flag[N+],prime[N+],phi[N+];
int n,ans;
void erphi()
{
int k=;
memset(flag,,sizeof(flag));
for (int i=;i<=n;i++)
{
if (!flag[i]) prime[k++]=i,phi[i]=i-;
for (int j=;j<k&&i*prime[j]<n;j++)
{
flag[i*prime[j]]=true;
if (i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
return;
}
int main()
{
scanf("%d",&n);
erphi();
for (int i=;i<n;i++)
ans+=phi[i];
printf("%d\n",ans*+);
return ;
}

【BZOJ2190】【SDOI2008】仪仗队的更多相关文章

  1. P2158/bzoj2190 [SDOI2008]仪仗队

    P2158 [SDOI2008]仪仗队 欧拉函数 计算下三角的点数再*2+1 观察斜率,自行体会 #include<iostream> #include<cstdio> #in ...

  2. bzoj2190: [SDOI2008]仪仗队(欧拉)

    2190: [SDOI2008]仪仗队 题目:传送门 题解: 跟着企鹅大佬做题! 自己瞎搞搞就OK,不难发现,如果以C作为原点建立平面直角坐标系,那么在这个坐标系中,坐标为(x,y)且GCD(x,y) ...

  3. BZOJ2190: [SDOI2008]仪仗队

    Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是 ...

  4. BZOJ2190 [SDOI2008]仪仗队 [欧拉函数]

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  5. bzoj2190 [SDOI2008]仪仗队 - 筛法 - 欧拉函数

    作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图).    ...

  6. BZOJ2190 [SDOI2008]仪仗队(欧拉函数)

    与HDU2841大同小异. 设左下角的点为(1,1),如果(1,1)->(x,y)和(1,1)->(x',y')向量平行,那只有在前面的能被看见.然后就是求x-1.y-1不互质的数对个数. ...

  7. 【数论】【欧拉函数】bzoj2190 [SDOI2008]仪仗队

    由图可知,一个人无法被看到时,当且仅当有 人与原点 的斜率与他相同,且在他之前. ∴一个人可以被看到,设其斜率为y/x,当且仅当y/x不可再约分,即gcd(x,y)=1. 考虑将图按对角线划分开,两部 ...

  8. [bzoj2190][SDOI2008]仪仗队 ——欧拉函数

    题解 以c点为(0, 0)建立坐标系,可以发现, 当(x,y)!=1,即x,y不互素时,(x,y)点一定会被点(x/n, y/n)遮挡. 所以点(x, y)被看到的充分必要条件是Gcd(x, y) = ...

  9. [BZOJ2190][SDOI2008]仪仗队 数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2190 看到这道题首先想到了NOI2010的能量采集,这不就是赤裸裸的弱化版吗?直接上莫比乌 ...

  10. BZOJ2190 SDOI2008 仪仗队 gcd,欧拉函数

    题意:求从左下角能看到的元素个数 引理:对点(x,y),连线(0,0)-(x,y),元素个数为gcd(x,y)-1(中间元素) 即要求gcd(x,y)=1 求gcd(x,y)=1的个数 转化为2 \s ...

随机推荐

  1. 理解JavaScript中的事件处理

    什么是事件? 事件(Event)是JavaScript应用跳动的心脏 ,也是把所有东西粘在一起的胶水.当我们与浏览器中 Web 页面进行某些类型的交互时,事件就发生了.事件可能是用户在某些内容上的点击 ...

  2. golang exec Command

    package mainimport ( "fmt" "log" "os/exec")func main() { out, err := e ...

  3. C# 与 Microsoft Expression Encoder实现屏幕录制

    在日常开发中,我们会经常遇到屏幕录制的需求.在C#中可以通过Expression Encoder的SDK实现这样的需求.首先需要下载Expression Encoder SDK,实现代码: priva ...

  4. 【leetcode】Candy

    题目描述: There are N children standing in a line. Each child is assigned a rating value. You are giving ...

  5. 4.0 和4.5 app 和generic,xaml的问题

    4.0里面不支持Generic.xaml里面 <ResourceDictionary.MergedDictionaries> <ResourceDictionary Source=& ...

  6. java线程之——synchronized的注意细节

    我在学习synchronized的时候,十分好奇当一个线程进入了一个对象的一个synchronized方法后,其它线程是否可进入此对象的其它方法? 然后就做了个实验(实验代码最后贴出),最后得到了如下 ...

  7. pythonchallenge之C++学习篇-02

    第二关任然是一个字符处理的关卡 查看网页源码发现有一大串字符需要处理,这么多的字符如果放在源代码里就很不好了 所以要用到C++对文件的操作,用到的头文件是fstream 这里参照了这个博文 对文件处理 ...

  8. Win7 Object_Header之TypeIndex解析

    在暴力搜索内存进程对象反隐藏进程这篇文章中,我们提到: Object Header偏移0×008处Type成员为对象类型值,相同类型的对象具有相同的值.  自Window  7开始, _OBJECT_ ...

  9. 【框架】异步加载大量图片--ImageLoader

    public abstract class BaseImageLoaderProvider { public abstract void loadImage(Context ctx, ImageLoa ...

  10. css3易混淆属性详解

    1.background,  background-color,   color (1)background:在一个声明中设置所有属性: 如:background: #00FF00 url(bgima ...