借用罗穗骞论文中的讲解:

计算A 的所有后缀和B 的所有后缀之间的最长公共前缀的长度,把最长公共前缀长度不小于k 的部分全部加起来。先将两个字符串连起来,中间用一个没有出现过的字符隔开。按height 值分组后,接下来的工作便是快速的统计每组中后缀之间的最长公共前缀之和。扫描一遍,每遇到一个B 的后缀就统计与前面的A 的后缀能产生多少个长度不小于k 的公共子串,这里A 的后缀需要用一个单调的栈来高效的维护。然后对A 也这样做一次。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdlib>
using namespace std;
const int N = 210008;
typedef long long LL; int val[N], sum[N], wa[N], wb[N];
int sa[N], rk[N], height[N];
char a[N], b[N]; inline bool cmp(int str[], int a, int b, int l){
return str[a] == str[b] && str[a + l] == str[b + l];
} void da(char str[], int n, int m){ int *x = wa, *y = wb;
memset(sum, 0, sizeof(sum)); for(int i = 0; i < n; i++){
sum[x[i] = str[i]]++;
}
for(int i = 1; i < m; i++){
sum[i] += sum[i - 1];
}
for(int i = n - 1; i >= 0; i--){
sa[--sum[ x[i]] ] = i;
}
for(int j = 1, p = 1; p < n; j *= 2, m = p){
p = 0;
for(int i = n - j; i < n; i++){
y[p++] = i;
}
for(int i = 0; i < n; i++){
if(sa[i] >= j){
y[p++] = sa[i] - j;
}
}
for(int i = 0; i < n; i++){
val[i] = x[ y[i] ];
} memset(sum , 0, sizeof(sum));
for(int i = 0; i < n; i++){
sum[val[i]]++;
}
for(int i = 1; i < m; i++){
sum[i] += sum[i - 1];
}
for(int i = n - 1; i >= 0; i--){
sa[--sum[ val[i] ]] = y[i];
} swap(x, y);
x[sa[0]] = 0;
p = 1;
for(int i = 1 ; i < n; i++){
x[sa[i]] = cmp(y, sa[i - 1], sa[i], j)? p - 1:p++;
}
}
} void getHeight(char str[], int n){
for(int i = 1; i <= n; i++){
rk[ sa[i] ] = i;
}
int k = 0;
for(int i = 0; i < n; height[rk[i++]] = k){
if(k) k--;
int j = sa[rk[i] - 1];
while(str[i + k] == str[j + k]){
k++;
}
}
} struct node{
int h;
LL cnt;
}stk[N]; int main(){ int k;
while(~scanf("%d", &k) && k){
scanf("%s %s", a, b);
int n = strlen(a);
int m = strlen(b);
int len = n + m + 1;
a[n] = 125;
for(int i = n + 1, j = 0; j < m; i++, j++){
a[i] = b[j];
}
a[len] = 0;
da(a, len + 1, 150);
getHeight(a, len);
LL sum = 0;
int top = 0;
LL tot = 0;
for(int i = 1; i <= len ; i++){
int cnt = 0;
if(height[i] < k){
top = 0;
tot = 0;
}else{
if(sa[i - 1] < n){
cnt++;
tot += height[i] - k + 1;
}
while(top > 0 && stk[top - 1].h > height[i]){
top--;
cnt += stk[top].cnt;
tot -= (stk[top].h - height[i]) * stk[top].cnt;
}
stk[top].h = height[i];
stk[top].cnt = cnt;
top++;
if(sa[i] > n){
sum += tot;
}
}
} top = 0;
tot = 0;
for(int i = 1; i <= len ; i++){
int cnt = 0;
if(height[i] < k){
top = 0;
tot = 0; }else{
if(sa[i - 1] > n){
cnt++;
tot += height[i] - k + 1;
}
while(top > 0 && stk[top - 1].h > height[i]){
top--;
cnt += stk[top].cnt;
tot -= (stk[top].h - height[i]) * stk[top].cnt;
}
stk[top].h = height[i];
stk[top].cnt = cnt;
top++;
if(sa[i] < n){
sum += tot;
}
}
}
printf("%I64d\n", sum);
}
return 0;
}

  

POJ3415 Common Substrings(后缀数组 单调栈)的更多相关文章

  1. POJ3415 Common Substrings —— 后缀数组 + 单调栈 公共子串个数

    题目链接:https://vjudge.net/problem/POJ-3415 Common Substrings Time Limit: 5000MS   Memory Limit: 65536K ...

  2. poj 3415 Common Substrings 后缀数组+单调栈

    题目链接 题意:求解两个字符串长度 大于等于k的所有相同子串对有多少个,子串可以相同,只要位置不同即可:两个字符串的长度不超过1e5; 如 s1 = "xx" 和 s2 = &qu ...

  3. poj 3415 Common Substrings——后缀数组+单调栈

    题目:http://poj.org/problem?id=3415 因为求 LCP 是后缀数组的 ht[ ] 上的一段取 min ,所以考虑算出 ht[ ] 之后枚举每个位置作为右端的贡献. 一开始想 ...

  4. poj 3415 Common Substrings —— 后缀数组+单调栈

    题目:http://poj.org/problem?id=3415 先用后缀数组处理出 ht[i]: 用单调栈维护当前位置 ht[i] 对之前的 ht[j] 取 min 的结果,也就是当前的后缀与之前 ...

  5. poj3415 Common Substrings (后缀数组+单调队列)

    Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 9414   Accepted: 3123 Description A sub ...

  6. 【BZOJ-3238】差异 后缀数组 + 单调栈

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1561  Solved: 734[Submit][Status] ...

  7. BZOJ_3879_SvT_后缀数组+单调栈

    BZOJ_3879_SvT_后缀数组+单调栈 Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个 ...

  8. BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈

    BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao ...

  9. BZOJ.4199.[NOI2015]品酒大会(后缀数组 单调栈)

    BZOJ 洛谷 后缀自动机做法. 洛谷上SAM比SA慢...BZOJ SAM却能快近一倍... 显然只需要考虑极长的相同子串的贡献,然后求后缀和/后缀\(\max\)就可以了. 对于相同子串,我们能想 ...

随机推荐

  1. 前端之常用标签和CSS初识

    外层div的宽度是100%,就是视口的大小,当视口被拉窄到小于内层div的宽度980px时,比如800px,此时 外层div宽度为800px,内层div宽度依然为980px,而css中只设置了外层di ...

  2. centos mysql 大量数据导入时1153 错误:1153 - Got a packet bigger than 'max_allowed_packet' bytes

    参考:http://stackoverflow.com/questions/93128/mysql-error-1153-got-a-packet-bigger-than-max-allowed-pa ...

  3. NOSQL概要

    NOSQL概要 NoSQL(NoSQL = Not Only SQL ),意即"不仅仅是SQL",泛指非关系型的数据库.NoSQL数据库的四大分类 键值(Key-Value)存储数 ...

  4. POJ 1258

    http://poj.org/problem?id=1258 今天晚上随便找了两道题,没想到两道都是我第一次碰到的类型———最小生成树.我以前并没有见过,也不知道怎么做,然后就看书,思路很容易理解 但 ...

  5. c++数据类型和定义

    我们都知道,刚开始学习数学的时候.乘法口诀.99乘法口诀.这个是大家都需要背的.背熟了这个,大家才能知道遇到算术题如何计算.这个99乘法口诀就是一种定义. 同样任何的语言都会有很多的定义.比如语文:各 ...

  6. ios 关于UIView 的multipleTouchEnabled 和 exclusiveTouch

    做项目时发现,在一个界面上的2个button竟然可以同时点击,依次push进去了2个 controller!我就产生了疑问,一个view的multipleTouchEnabled属性默认是false啊 ...

  7. Delphi xe5 手机开发经验(新手级别)

    Delphi xe5 手机开发经验(新手级别) http://diybbs.zol.com.cn/1/34037_699.html http://www.delphitop.com/html/jiqi ...

  8. js数组转置

    <script type="text/javascript">     var arr=[[1,2,3],[4,5,6],[7,8,9],[17,18,19]];    ...

  9. GCD 大中枢派发 简单应用实例

    @interface ViewController () { UIImageView* iv; UIButton* btn; UILabel* lbl; } @end @implementation ...

  10. 【leetcode】Best Time to Buy and Sell 2(too easy)

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...