一些概念:

(1)子序列: 一个序列A = a1,a2,……an,中任意删除若干项,剩余的序列叫做A的一个子序列。也可以认为是从序列A按原顺序保留任意若干项得到的序列。

例如:

 
对序列 1,3,5,4,2,6,8,7来说,序列3,4,8,7 是它的一个子序列。
对于一个长度为n的序列,它一共有2^n 个子序列,有(2^n – 1)个非空子序列。
请注意:子序列不是子集,它和原始序列的元素顺序是相关的。
(2)公共子序列 : 顾名思义,如果序列C既是序列A的子序列,同时也是序列B的子序列,则称它为序列A和序列B的公共子序列。
例如:
 
对序列 1,3,5,4,2,6,8,7和序列 1,4,8,6,7,5 来说
序列1,8,7是它们的一个公共子序列。
请注意: 空序列是任何两个序列的公共子序列。
例如: 序列1,2,3和序列4,5,6的公共子序列只有空序列。
 
(3)最长公共子序列

A和B的公共子序列中长度最长的(包含元素最多的)叫做A和B的公共子序列。
仍然用序列1,3,5,4,2,6,8,7和序列1,4,8,6,7,5
它们的最长公共子序列是:
1,4,8,7
1,4,6,7

最长公共子序列的长度是4 。
请注意: 最长公共子序列不唯一。

请大家用集合的观点来理解这些概念,子序列、公共子序列以及最长公共子序列都不唯一,所以我们通常说一个最长公共子序列,但显然最长公共子序列的长度是一定的。

最长公共子序列问题就是求序列A= a1,a2,……an, 和B = b1,b2,……bm,的一个最长公共子序列。

因为最长公共子序列不唯一,让我们把问题简化,如何求出两个序列的最长公共子序列长度呢?

你首先能想到的恐怕是暴力枚举?那我们先来看看:序列A有 2^n 个子序列,序列B有 2^m 个子序列,如果任意两个子序列一一比较,比较的子序列高达 2^(n+m) 对,这还没有算具体比较的复杂度。

或许你说,只有长度相同的子序列才会真正进行比较。那么忽略空序列,我们来看看:对于A长度为1的子序列有C(n,1)个,长度为2的子序列有C(n,2)个,……长度为n的子序列有C(n,n)个。对于B也可以做类似分析,即使只对序列A和序列B长度相同的子序列做比较,那么总的比较次数高达:
C(n,1)*C(m,1)*1 + C(n,2) * C(m,2) * 2+ …+C(n,p) * C(m,p)*p

其中p = min(m, n)。

吓着了吧?怎么办?试试使用动态规划算法!

我们用Ax表示序列A的连续前x项构成的子序列,即Ax= a1,a2,……ax, By= b1,b2,……by, 我们用LCS(x, y)表示它们的最长公共子序列长度,那原问题等价于求LCS(m,n)。为了方便我们用L(x, y)表示Ax和By的一个最长公共子序列。

让我们来看看如何求LCS(x, y)。我们令x表示子序列考虑最后一项
(1) Ax = By

那么它们L(Ax, By)的最后一项一定是这个元素!

为什么呢?为了方便,我们令t = Ax = By, 我们用反证法:假设L(x,y)最后一项不是t,
则要么L(x,y)为空序列(别忘了这个),要么L(x,y)的最后一项是Aa=Bb ≠ t, 且显然有a < x, b < y。无论是哪种情况我们都可以把t接到这个L(x,y)后面,从而得到一个更长的公共子序列。矛盾!
如果我们从序列Ax中删掉最后一项ax得到Ax-1,从序列By中也删掉最后一项by得到By-1,(多说一句角标为0时,认为子序列是空序列),则我们从L(x,y)也删掉最后一项t得到的序列是L(x – 1, y - 1)。为什么呢?和上面的道理相同,如果得到的序列不是L(x - 1, y - 1),则它一定比L(x - 1, y - 1)短(注意L(,)是个集合!),那么它后面接上元素t得到的子序列L(x,y)也比L(x - 1, y - 1)接上元素t得到的子序列短,这与L(x, y)是最长公共子序列矛盾。
 
因此L(x, y) = L(x - 1, y - 1) 最后接上元素t

LCS(Ax, By) = LCS(x - 1, y - 1) + 1
(2)  Ax ≠ By
仍然设t = L(Ax, By), 或者L(Ax, By)是空序列(这时t是未定义值不等于任何值)。
则t  ≠ Ax和t  ≠ By至少有一个成立,因为t不能同时等于两个不同的值嘛!
(2.1) 如果t  ≠ Ax,则有L(x, y)= L(x - 1, y),因为根本没Ax的事嘛。
 LCS(x,y) = LCS(x – 1, y)
(2.2) 如果t  ≠ By,l类似L(x, y)= L(x , y - 1)

LCS(x,y) = LCS(x, y – 1)

可是,我们事先并不知道t,由定义,我们取最大的一个,因此这种情况下,有LCS(x,y) = max(LCS(x – 1, y) , LCS(x, y – 1))。
看看目前我们已经得到了什么结论:

LCS(x,y) = 
(1) LCS(x - 1,y - 1) + 1 如果Ax = By
(2) max(LCS(x – 1, y) , LCS(x, y – 1)) 如果Ax ≠ By

这时一个显然的递推式,光有递推可不行,初值是什么呢?

显然,一个空序列和任何序列的最长公共子序列都是空序列!所以我们有:
 
LCS(x,y) = 
(1) LCS(x - 1,y - 1) + 1 如果Ax = By
(2) max(LCS(x – 1, y) , LCS(x, y – 1)) 如果Ax ≠ By
(3) 0 如果x = 0或者y = 0

到此我们求出了计算最长公共子序列长度的递推公式。我们实际上计算了一个(n + 1)行(m + 1)列的表格(行是0..n,列是0..m),也就这个二维度数组LCS(,)。

大概的伪代码如下:
输入序列A, B长度分别为n,m,计算二维表 LCS(int,int):

for x = 0 to n do
  for y = 0 to m do
    if (x == 0 || y == 0) then  
      LCS(x, y) = 0
    else if (Ax == By) then
      LCS(x, y) = LCS(x - 1,y - 1) + 1
    else
      LCS(x, y) = ) max(LCS(x – 1, y) , LCS(x, y – 1)) 
    endif
  endfor
endfor

注意: 我们这里使用了循环计算表格里的元素值,而不是递归,如果使用递归需要已经记录计算过的元素,防止子问题被重复计算。

现在问题来了,我们如何得到一个最长公共子序列而仅仅不是简单的长度呢?其实我们离真正的答案只有一步之遥!

 
仍然考虑那个递推式,我们LCS(x,y)的值来源的三种情况:
(1) LCS(x – 1,  y – 1) + 1如果Ax = By
这对应L(x,y) = L(x,- 1 y- 1)末尾接上Ax
(2.1) LCS(x – 1, y)  如果Ax ≠ By且LCS(x – 1, y) ≥LCS(x, y – 1)
这对应L(x,y)= L(x – 1, y)
(2.2) LCS(x, y – 1)  如果Ax ≠ By且LCS(x – 1, y) <LCS(x, y – 1)
这对应L(x,y) = L(x, y – 1)
(3) 0 如果 x =0或者y = 0
这对应L(x,y)=空序列
注意(2.1)和(2.2) ,当LCS(x – 1, y) = LCS(x, y – 1)时,其实走哪个分支都一样,虽然长度时一样的,但是可能对应不同的子序列,所以最长公共子序列并不唯一。
神奇吧?又一个类似的递推公式。可见我们在计算长度LCS(x,y)的时候只要多记录一些信息,就可以利用这些信息恢复出一个最长公共子序列来。就好比我们在迷宫里走路,走到每个位置的时候记录下我们时从哪个方向来的,就可以从终点回到起点一样。

另外,说一下复杂度?
时间复杂度时O(n * m),空间也是O(n * m)
今天对LCS的讲解就到这里,聪明的你是不是已经蠢蠢欲动要AC问题啦? 心动不如行动,赶快吧。

最后,我们来提供输入输出数据,由你来写一段程序,实现这个算法,只有写出了正确的程序,才能继续后面的课程。

 
输入

第1行:字符串A
第2行:字符串B
(A,B的长度 <= 1000)
输出
 
输出最长的子序列,如果有多个,随意输出1个。
 
输入示例

abcicba
abdkscab
输出示例

abca
代码
#include<iostream>
#include<cstring>
#include<string> using namespace std; string ans[],a,b;
int w,i,j,dp[][];
int main()
{
cin>>a>>b;
for(i=;i<=a.length() ;++i)
{
for(j=;j<=b.length() ;++j)
{
if(a[i-]==b[j-]) dp[i][j]=dp[i-][j-]+;
else {
if(dp[i][j-]>=dp[i-][j])
dp[i][j]=dp[i][j-];
else dp[i][j]=dp[i-][j];
}
}
}
for(i=a.length(),j=b.length();i>=&&j>=;)
{
if(a[i-]==b[j-])
{
ans[w++]=a[i-];
i--;
j--;
}
else {
if(dp[i][j-]>dp[i-][j])
{
j--;
}
else i--;
}
}
for(j=w-;j>=;--j)
cout<<ans[j];
cout<<endl;
return ;
}

(来源于51nod教程)。


准备NOIP2017 最长公共子序列(模版)的更多相关文章

  1. hunnu 11313 无重复元素序列的最长公共子序列转化成最长递增子序列 求法及证明

    题目:http://acm.hunnu.edu.cn/online/?action=problem&type=show&id=11313 湖师大的比赛,见我的另一篇水题题解,这里要说的 ...

  2. UVA10100:Longest Match(最长公共子序列)&&HDU1458Common Subsequence ( LCS)

    题目链接:http://blog.csdn.net/u014361775/article/details/42873875 题目解析: 给定两行字符串序列,输出它们之间最大公共子单词的个数 对于给的两 ...

  3. 用python实现最长公共子序列算法(找到所有最长公共子串)

    软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. [Data Structure] LCSs——最长公共子序列和最长公共子串

    1. 什么是 LCSs? 什么是 LCSs? 好多博友看到这几个字母可能比较困惑,因为这是我自己对两个常见问题的统称,它们分别为最长公共子序列问题(Longest-Common-Subsequence ...

  6. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  7. LintCode 77: 最长公共子序列

    public class Solution { /** * @param A, B: Two string. * @return: the length of the longest common s ...

  8. 删除部分字符使其变成回文串问题——最长公共子序列(LCS)问题

    先要搞明白:最长公共子串和最长公共子序列的区别.    最长公共子串(Longest Common Substirng):连续 最长公共子序列(Longest Common Subsequence,L ...

  9. LCS(Longest Common Subsequence 最长公共子序列)

    最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...

随机推荐

  1. 移动Web开发(一)

    1.浅谈Web标准 降低开发复杂度,覆盖的技术层面十分广泛,技术标准化. 以HTML为核心,扩展出几个大类的技术标准: a.程序访问: ECMAScript(ES) 3 . ES 5 . ES ham ...

  2. iOS解析数据时Error=3840

    1.解析JSon数据格式出错的问题 unescaped control character around character XXXX 和 The data couldn’t be read beca ...

  3. 【Android】用MediaRecorder录制视频太短崩的问题

    具体表现: 调用MediaRecorder的start()与stop()间隔不能小于1秒(有时候大于1秒也崩),否则必崩. 错误信息: java.lang.RuntimeException: stop ...

  4. django 基于proxy实现用户权限管理

    项目中经常会遇到用户权限管理的问题,django adminsite已经提供非常实用的用户权限管理机制.不过有些时候,我们希望根据相关用户属性来过滤adminsite中显示的内容.下文将结束如何实现: ...

  5. javascript 创建对象

    1.原型模式创建对象 (1)第一种function Newperson(){    } var person2 = new Newperson(); Newperson.prototype.name ...

  6. ERROR [org.apache.hadoop.security.UserGroupInformation] - PriviledgedActionExcep

    换了个环境,出现此异常 016-10-18 23:54:01,334 WARN [org.apache.hadoop.util.NativeCodeLoader] - Unable to load n ...

  7. Jetty 发布web服务

    Jetty provides a Web server and javax.servlet container, plus support for HTTP/2, WebSocket, OSGi, J ...

  8. 使用eclipse查看源码的方法

    打开eclipse,建立项目:Test,将struts2相关jar包导入到其中.在Package Explorer标签栏下操作. 如下图: 在此,以查阅struts2中,struts2-core-2. ...

  9. PHP MSSQL 分页实例(刷新)

    <?php/* '页面说明:*/ $link=mssql_connect("MYSQL2005","sa","123456") or ...

  10. 如何编译ReactNative示例程序Examples

    通过示例程序可以看到一些基本组件的使用,对于学习ReactNative是很有帮助的. 编译示例程序需要将整个项目导入到androidStudio中,androidStudio导入项目时选择react- ...