http://www.rqnoj.cn/problem/659

描述

给定一个多项式(ax + by)^k,请求出多项式展开后x^n * y^m项的系数。

格式

输入格式

共一行,包含5个整数,分别为a,b,k,n,m,每两个整数之间用一个空格隔开。

输出格式

输出共1行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007取模后的结果

样例1

样例输入1[复制]

1 1 3 1 2

样例输出1[复制]

3

限制

1s

提示

对于30%的数据,有0 ≤ k ≤ 10;
对于50%的数据,有a = 1, b = 1;
对于100%的数据,有0 ≤ k ≤ 1000,0 ≤ n, m ≤ k,且n+m = k,0 ≤ a,b ≤ 1,000,000.

来源

NOIp2011提高组Day2第一题

大意:给定一个多项式(ax + by)^k,请求出多项式展开后x^n*y^m项的系数。

题解:求杨辉三角第k行(有k个数的那行)第m个,乘上a^n和b^m的快速幂取模。

特殊处理:if(n+m!=k) puts("0"); ///就是k次幂的各项x^n*y^m的n+m都是等于k的,没有不等于k的项,相当于这项系数是0。(但没有这样的数据,我想多了)

数据较大,最好全用long long。

 //#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<stack>
#include<queue>
using namespace std;
#define ll long long
#define usint unsigned int
#define mz(array) memset(array, 0, sizeof(array))
#define minf(array) memset(array, 0x3f, sizeof(array))
#define REP(i,n) for(int i=0;i<(n);i++)
#define FOR(i,x,n) for(int i=(x);i<=(n);i++)
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define WN(x) printf("%d\n",x);
#define RE freopen("D.in","r",stdin)
#define WE freopen("1biao.out","w",stdout) const int MOD=; int f[][];
int a,b,k,x,y;
ll pow_mod(int x,int k){
ll re=,t=x;
while(k>){
if(k&==){re*=t;re%=MOD;}
t*=t;
t%=MOD;
k>>=;
}
return re;
} int main() {
ll i,j;
mz(f);
f[][]=;
for(i=; i<=; i++) {
f[i][]=;
for(j=; j<=i; j++)
f[i][j]=(f[i-][j-]+f[i-][j])%MOD;
}
while(scanf("%d%d%d%d%d",&a,&b,&k,&x,&y)!=EOF) {
if(x+y!=k) puts("");
else { printf("%lld\n",(((((ll)f[k][y]) * pow_mod(a,x)) % MOD) * pow_mod(b,y)) % MOD);
}
}
return ;
}

RQNOJ659 计算系数的更多相关文章

  1. codevs1137 计算系数

    1137 计算系数 2011年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description 给定一 ...

  2. 【转】TYVJ 1695 计算系数(NOIP2011 TG DAY2 1)

    计算系数 题目描述 给定一个多项式(ax + by)k,请求出多项式展开后xn ym项的系数. [数据范围] 对于 30%的数据,有0≤k≤10: 对于 50%的数据,有a = 1,b = 1: 对于 ...

  3. NOIP2011 计算系数

    1计算系数 给定一个多项式 (ax + by)k ,请求出多项式展开后 x n y m 项的系数. [输入] 输入文件名为 factor.in. 共一行,包含 5 个整数,分别为 a,b,k,n,m, ...

  4. COJ 0138 NOIP201108计算系数

    NOIP201108计算系数 难度级别:A: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 给定一个多项式(ax + by)^k,请求出多项式 ...

  5. 【洛谷p1313】计算系数

    (%%%hmr) 计算系数[传送门] 算法呀那个标签: (越来越懒得写辽)(所以今天打算好好写一写) 首先(ax+by)k的计算需要用到二项式定理: 对于(x+y)k,有第r+1项的系数为:Tr+1= ...

  6. 一本通1648【例 1】「NOIP2011」计算系数

    1648: [例 1]「NOIP2011」计算系数 时间限制: 1000 ms         内存限制: 524288 KB [题目描述] 给定一个多项式 (ax+by)k ,请求出多项式展开后 x ...

  7. 洛谷P1313 计算系数【快速幂+dp】

    P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...

  8. 洛谷 P1313 计算系数 解题报告

    P1313 计算系数 题目描述 给定一个多项式\((by+ax)^k\),请求出多项式展开后\(x^n*y^m\)项的系数. 输入输出格式 输入格式: 共一行,包含5个整数,分别为\(a,b,k,n, ...

  9. 洛谷P1313 计算系数

    P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...

随机推荐

  1. NuGet包调试源码的方法

    如果按照nuget官网给出的网址:https://docs.nuget.org/create/creating-and-publishing-a-symbol-package 那么你会发觉下载符号包的 ...

  2. Zabbix3.2安装部署

    zabbix server 前提环境: CentOS6 Lnmp php需要的包(bcmath,mbstring,sockets,gd,libxml,xmlwriter,xmlreader,ctype ...

  3. [SVN Mac的SVN使用]

    在Windows环境中,我们一般使用TortoiseSVN来搭建svn环境.在Mac环境下,由于Mac自带了svn的服务器端和客户端功能,所以我们可以在不装任何第三方软件的前提下使用svn功能,不过还 ...

  4. PL/0编译器(java version) – SymbolTable.java

    1: package compiler; 2: //竟然没有对符号表检查大小,会溢出的. 3:   4: import java.io.IOException; 5:   6: public clas ...

  5. web前端性能优化

    性能优化对于用户体验无疑是非常重要的,下面介绍一些性能优化的方法. 1.减少HTTP请求 http请求越多,那么消耗的时间越多,如果在加上网络很糟糕,那么问题就更多了.且如果网页中的图片.css文件. ...

  6. ecshop 给商品随机添加评论

    <?php /* * 随机插入商品评论 * * * */ define('IN_ECS', true); require(dirname(__FILE__) . '/includes/init. ...

  7. BZOJ2208: [Jsoi2010]连通数

    tarjan缩点后拓扑排序,每一个点用一个bitset记录哪些点能到达它. PS:数据太水,暴力能过. #include<bits/stdc++.h> using namespace st ...

  8. Notepad++ 开启「切分窗口」同时检视、比对两份文件

    Notepad++ 是个相当好用的免费纯文本编辑器,除了内建的功能相当多之外,也支持外挂模块的方式扩充各方面的应用.以前我都用 UltraEdit 跟 Emeditor,后来都改用免费的 Notepa ...

  9. Apache和Nginx配置支持苹果ATS方法

    什么是ATS功能? ATS是iOS9和OS X El Capitan的一个新特性.开启该功能后,ATS对使用NSURLConnection, CFURL或NSURLSession 等APIs 进行的网 ...

  10. SVN cleanup操作反复失败解决办法

    今天在更新项目的时候遇到一个问题,按惯例要cleanup才能重新更新.但是很不幸,在cleanup的时候又遇到了问题! 1    svn cleanup failed–previous operati ...