http://www.rqnoj.cn/problem/659

描述

给定一个多项式(ax + by)^k,请求出多项式展开后x^n * y^m项的系数。

格式

输入格式

共一行,包含5个整数,分别为a,b,k,n,m,每两个整数之间用一个空格隔开。

输出格式

输出共1行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007取模后的结果

样例1

样例输入1[复制]

1 1 3 1 2

样例输出1[复制]

3

限制

1s

提示

对于30%的数据,有0 ≤ k ≤ 10;
对于50%的数据,有a = 1, b = 1;
对于100%的数据,有0 ≤ k ≤ 1000,0 ≤ n, m ≤ k,且n+m = k,0 ≤ a,b ≤ 1,000,000.

来源

NOIp2011提高组Day2第一题

大意:给定一个多项式(ax + by)^k,请求出多项式展开后x^n*y^m项的系数。

题解:求杨辉三角第k行(有k个数的那行)第m个,乘上a^n和b^m的快速幂取模。

特殊处理:if(n+m!=k) puts("0"); ///就是k次幂的各项x^n*y^m的n+m都是等于k的,没有不等于k的项,相当于这项系数是0。(但没有这样的数据,我想多了)

数据较大,最好全用long long。

 //#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<stack>
#include<queue>
using namespace std;
#define ll long long
#define usint unsigned int
#define mz(array) memset(array, 0, sizeof(array))
#define minf(array) memset(array, 0x3f, sizeof(array))
#define REP(i,n) for(int i=0;i<(n);i++)
#define FOR(i,x,n) for(int i=(x);i<=(n);i++)
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define WN(x) printf("%d\n",x);
#define RE freopen("D.in","r",stdin)
#define WE freopen("1biao.out","w",stdout) const int MOD=; int f[][];
int a,b,k,x,y;
ll pow_mod(int x,int k){
ll re=,t=x;
while(k>){
if(k&==){re*=t;re%=MOD;}
t*=t;
t%=MOD;
k>>=;
}
return re;
} int main() {
ll i,j;
mz(f);
f[][]=;
for(i=; i<=; i++) {
f[i][]=;
for(j=; j<=i; j++)
f[i][j]=(f[i-][j-]+f[i-][j])%MOD;
}
while(scanf("%d%d%d%d%d",&a,&b,&k,&x,&y)!=EOF) {
if(x+y!=k) puts("");
else { printf("%lld\n",(((((ll)f[k][y]) * pow_mod(a,x)) % MOD) * pow_mod(b,y)) % MOD);
}
}
return ;
}

RQNOJ659 计算系数的更多相关文章

  1. codevs1137 计算系数

    1137 计算系数 2011年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description 给定一 ...

  2. 【转】TYVJ 1695 计算系数(NOIP2011 TG DAY2 1)

    计算系数 题目描述 给定一个多项式(ax + by)k,请求出多项式展开后xn ym项的系数. [数据范围] 对于 30%的数据,有0≤k≤10: 对于 50%的数据,有a = 1,b = 1: 对于 ...

  3. NOIP2011 计算系数

    1计算系数 给定一个多项式 (ax + by)k ,请求出多项式展开后 x n y m 项的系数. [输入] 输入文件名为 factor.in. 共一行,包含 5 个整数,分别为 a,b,k,n,m, ...

  4. COJ 0138 NOIP201108计算系数

    NOIP201108计算系数 难度级别:A: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 给定一个多项式(ax + by)^k,请求出多项式 ...

  5. 【洛谷p1313】计算系数

    (%%%hmr) 计算系数[传送门] 算法呀那个标签: (越来越懒得写辽)(所以今天打算好好写一写) 首先(ax+by)k的计算需要用到二项式定理: 对于(x+y)k,有第r+1项的系数为:Tr+1= ...

  6. 一本通1648【例 1】「NOIP2011」计算系数

    1648: [例 1]「NOIP2011」计算系数 时间限制: 1000 ms         内存限制: 524288 KB [题目描述] 给定一个多项式 (ax+by)k ,请求出多项式展开后 x ...

  7. 洛谷P1313 计算系数【快速幂+dp】

    P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...

  8. 洛谷 P1313 计算系数 解题报告

    P1313 计算系数 题目描述 给定一个多项式\((by+ax)^k\),请求出多项式展开后\(x^n*y^m\)项的系数. 输入输出格式 输入格式: 共一行,包含5个整数,分别为\(a,b,k,n, ...

  9. 洛谷P1313 计算系数

    P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...

随机推荐

  1. 【codevs1170】 双栈排序

    http://codevs.cn/problem/1170/ (题目链接) 题意 给出一个初始序列,判断能否通过两个栈的入栈和出栈操作构造出一个有序序列.若可以,输出字典序最小的方案. Solutio ...

  2. CCNET+ProGet+Windows Batch搭建全自动的内部包打包和推送及管理平台

    所要用的工具: 1.CCNET(用于检测SVN有改动提交时自动构建,并运行nuget的自动打包和推送批处理) 2.ProGet(目前见到最好用的nuget内部包管理平台) 3.Windows Batc ...

  3. Birthday-24

    2013 LEXUS花样滑冰 和母亲在一起,生日快乐!

  4. 企业应用系统设计分享PPT

    因今天上午需要为团队做一个分享,所以昨晚连夜写了一个<企业应用系统设计>的PPT,因为时间比较短,写的比较急.现在把PPT贴出来,做一个记录.同时也希望对大家有用. 文件我上传到了百度网盘 ...

  5. Django admin coercing to Unicode: need string or buffer, tuple found

    见 http://stackoverflow.com/questions/29762306/django-admin-coercing-to-unicode-need-string-or-buffer ...

  6. CMD命令之 :修改windows的CMD窗口输出编码格式为UTF-8

    修改windows的CMD窗口输出编码格式为UTF-8 转载自 http://xuliduo.iteye.com/blog/639923 dos命令: chcp 65001  就是换成UTF-8代码页 ...

  7. log4net配置和获取ILog实例

    名称 描述 File 文件路径,如果RollingStyle为Composite或Date,则这里设置为目录,文件名在DatePattern里设置,其他则这里要有文件名.已经扩展支持虚拟目录 Roll ...

  8. RNN 入门教程 Part 3 – 介绍 BPTT 算法和梯度消失问题

    转载 - Recurrent Neural Networks Tutorial, Part 3 – Backpropagation Through Time and Vanishing Gradien ...

  9. BZOJ1577 USACO 2009 Feb Gold 1.Fair Shuttle Solution

    权限题,不给传送门啦!在学校OJ上交的.. 有些不开心,又是一道贪心,又是一个高级数据结构的模板,又是看了别人的题解还写崩了QAQ,蒟蒻不需要理由呀. 正经题解: 首先,我们可以由「显然成立法」得出, ...

  10. su su- sudo的区别

    linux su命令参数及用法详解(linux切换用户命令) su的作用是变更为其它使用者的身份,超级用户除外,需要键入该使用者的密码   linux su 命令 建议大家切换用户的时候 使用 su ...