【51nod 1824】染色游戏
题目
有 n 个红球, m 个蓝球,从中取出 x 个红球和 y 个蓝球排成一排的得分是 rx⋅by ,其中 r0=b0=1 。
定义 f(t) 表示恰好取出 t 个球排成一排的所有可能局面的得分之和。
两个局面相同,当且仅当这两排球的个数相等,且在对应列位置上的颜色都是相同的。
小Q想知道,有多少 t (1≤t≤n+m) 使得 f(t) 是奇数,你能告诉他满足条件的 t2 之和吗?
对于样例, f(1)=2,f(2)=5,f(3)=13,f(4)=28,f(5)=50,f(6)=60 ,答案是 $22+32=13 $。
分析
cty爆音通道 to 分治做法什么的看到我一脸懵逼
于是只能打个FWT
题目中的\(f(t)=\sum_{x+y=t}r_xb_yC_{t}^{x}\),这个不用多解释。
然后考虑如何判断\(f(t)\)是否为奇数,
因为只用判断奇偶,只用保留%2的结果。
据说根据lucas定理得出,\(C_{n+m}^n\)为奇数,尤其尤其仅当\([x\ and\ y=0]\)
于是
原式得
\]
\]
\]
设\(bit(i)\)表示二进制下i的1的个数
\]
然后考虑如何用FWT处理这个,
我们让\(rr_{bit(i),i}=r_i,bb_{bit(i),i}=b_i,其余为0\)
然后,对于\(rr_{bit(0-20)},bb_{bit(0-20)}\), 都做一次FWT,
接着,对于\(f_{bit(t),i}=\sum_{bit(x)+bit(y)=bit(t)}rr_{bit(x)}bb_{bit(y)}\)
最后UFWT。
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
#include <bitset>
const int maxlongint=2147483647;
const int mo=1e9+7;
const int N=2200005;
const int M=1<<8;
using namespace std;
#define sqr(x) (1ll*(x)*(x))
int n,m,r[N],b[N],fn,bit[N];
long long ans;
int rr[23][N>>3],bb[23][N>>3],v[4],mi[10];
int val(int i,int j)
{
return (i<<3)+7-j;
}
void read(int *a,int n)
{
for(int i=1;i<=n;i++)
{
char c=getchar();
for(;c<'0' || c>'9';c=getchar());
a[i]=c-'0';
}
}
void FWT(int *f)
{
for(int len=1;len<=3;len++)
for(int i=0;i<fn>>3;i++)
f[i]^=(f[i]&v[len])>>(1<<(len-1));
for(int len=2;len<=fn>>3;len<<=1)
{
int half=len>>1;
for(int i=0;i<half;i++)
for(int j=i;j<fn>>3;j+=len) f[j+half]^=f[j];
}
}
int main()
{
freopen("1824.in","r",stdin);
freopen("1824.out","w",stdout);
scanf("%d%d",&n,&m);
fn=1<<21,v[1]=170,v[2]=204,v[3]=240;
mi[0]=1;
for(int i=1;i<=8;i++) mi[i]=mi[i-1]<<1;
for(int i=0;i<=fn;i++)
for(int x=i;x;x&=x-1,bit[i]++);
r[0]=b[0]=1;
read(r,n),read(b,m);
for(int i=0;i<fn>>3;i++)
for(int j=7;j>=0;j--)
rr[bit[val(i,j)]][i]^=(r[val(i,j)]&1)*mi[j],bb[bit[val(i,j)]][i]^=(b[val(i,j)]&1)*mi[j];
for(int i=0;i<=20;i++) FWT(rr[i]),FWT(bb[i]);
for(int i=0;i<fn>>3;i++)
{
for(int k=20;k>=0;k--)
{
int tmp=0;
for(int j=0;j<=k;j++)
tmp^=bb[k-j][i]&rr[j][i];
rr[k][i]=tmp;
}
}
for(int i=0;i<=20;i++) FWT(rr[i]);
for(int i=0;i<fn>>3;i++)
for(int j=7;j>=0;j--)
if(val(i,j)<=n+m)
if(rr[bit[val(i,j)]][i]&mi[j]) ans+=sqr(val(i,j));
printf("%lld\n",ans);
}
【51nod 1824】染色游戏的更多相关文章
- 51nod 1459 迷宫游戏(dij)
题目链接:51nod 1459 迷宫游戏 dij裸题. #include<cstdio> #include<cstring> #include<algorithm> ...
- 【BZOJ1434】[ZJOI2009]染色游戏(博弈论)
[BZOJ1434][ZJOI2009]染色游戏(博弈论) 题面 BZOJ 洛谷 题解 翻硬币的游戏我似乎原来在博客里面提到过,对于这类问题,当前局面的\(SG\)函数就是所有反面朝上的硬币单一存在时 ...
- 题解 [SDOI2009]E&D/染色游戏/Moving Pebbles
E&D 染色游戏 Moving Pebbles E&D 题目大意 给出 \(2n\) 堆石子,\(2i-1\) 和 \(2i\) 为一组.每次可以选择一组删掉其中一堆,然后从同一组另外 ...
- 51nod 1069 Nim游戏 + BZOJ 1022: [SHOI2008]小约翰的游戏John(Nim游戏和Anti-Nim游戏)
首先,51nod的那道题就是最简单的尼姆博弈问题. 尼姆博弈主要就是判断奇异局势,现在我们就假设有三个石子堆,最简单的(0,n,n)就是一个奇异局势,因为无论先手怎么拿,后手总是可以在另一堆里拿走相同 ...
- 51nod 1459 迷宫游戏 dijkstra模板
链接:迷宫游戏 问题 - 51Nod http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1459 1459 迷宫游戏 基准 ...
- 51nod 1534 棋子游戏
1534 棋子游戏 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 http://www.51nod.com/onlineJudg ...
- 51Nod 1070 Bash游戏 V4(斐波那契博弈)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1070 题意: 思路: 这个是斐波那契博弈,http://blog.csd ...
- 51nod 1070 Bash游戏 V4 (斐波那契博弈)
题目:传送门. 有一堆个数为n(n>=2)的石子,游戏双方轮流取石子,规则如下: 1)先手不能在第一次把所有的石子取完,至少取1颗: 2)之后每次可以取的石子数至少为1,至多为对手刚取的石子数的 ...
- [ZJOI2009]染色游戏
Description 一共n × m 个硬币,摆成n × m 的长方形.dongdong 和xixi 玩一个游戏, 每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个 硬币属于这个 ...
随机推荐
- Linux C/C++基础——文件(上)
1.文件指针 FILE* fp=NULL; fp指针,只调用了fopen(),在堆区分配空间,把地址返回给fp fp指针不是指向文件,fp指针和文件关联,fp内部成员保存在文件的状态 操作fp指针,不 ...
- eclipse SVN插件的日常使用
安装(我的安装方法,怎么方便怎么来) 1.打开eclipse,选择Help->Eclipse MarketPlace,搜索subclipse,点击install,等待.安装成功后会询问重启,点击 ...
- vue中 Vue.set 的使用
Vue.set(vm.items, indexOfItem, newValue) 1.vm.items :源数据:2.indexOfItem : 要修改的数据的键3.newValue : 要修改的数据 ...
- 同sql server不同database间的数据访问
虽未经测试,但是应该是登陆名同时具有此2数据库访问权限啦. select * from [basename].dbo.[tablename] done.
- Oracle集群检测命令
select inst_id, count(inst_id) from gv$session group by inst_id order by inst_id; srvctl stop databa ...
- java_实现一个类只能声明一个对象
public class StaticDemo { public int a=10; private static StaticDemo s= new StaticDemo(); private St ...
- 认识并学会springCloud的使用
SpringCloud将现在一些流行的技术整合到一起,实现如:配置管理,服务发现,智能路由,负载均衡,熔断器,控制总线,集群状态等等功能.主要涉及的组件有 netflix Eureka:注册中心 Zu ...
- 【NOIP2017】跳房子
这题我0分. 比赛时,我一眼出正解,哈哈,太水了! 这题不就是一个二分+DP+单调队列吗? 然而,细节决定成败. 我错了许多细节,就挂了. 我只考了0分... 首先,这题满足一个条件: 保证g变大后, ...
- WordPress网站搬家数据迁移完整教程
用本地环境搭建好的WordPress网站在做好之后如何从本地迁移到网络空间或者网络服务器上呢? 首先请确认你在本地建站的时候只做了themes里面的模版文件,如果只是自己改了下模版,那么网站在搬到服务 ...
- Linux安全审计
Client: OMAudit_agent.py #!/usr/bin/env python #coding:utf- import sys import socket import fcntl im ...