题目传送门


题目描述

在2016年,佳媛姐姐喜欢上了数字序列。

因而她经常研究关于序列的一些奇奇怪怪的问题,现在她在研究一个难题,需要你来帮助她。

这个难题是这样子的:给出一个1到n的全排列,现在对这个全排列序列进行m次局部排序,排序分为两种:1:(0,l,r)表示将区间[l,r]的数字升序排序2:(1,l,r)表示将区间[l,r]的数字降序排序最后询问第q位置上的数字。


输入格式

输入数据的第一行为两个整数n和m。n表示序列的长度,m表示局部排序的次数。
第二行为n个整数,表示1到n的一个全排列。
接下来输入m行,每一行有三个整数op,l,r,op为0代表升序排序,op为1代表降序排序,l,r表示排序的区间。
最后输入一个整数q,q表示排序完之后询问的位置。


输出格式

输出数据仅有一行,一个整数,表示按照顺序将全部的部分排序结束后第q位置上的数字。


样例

样例输入

6 3
1 6 2 5 3 4
0 1 4
1 3 6
0 2 4
3

样例输出

5


数据范围与提示

$1\leqslant n,m\leqslant {10}^5$

$1\leqslant q\leqslant n$


题解

它放在了“不打正解的我”这一板块,正解是线段树,时间复杂度$\Theta (m\log^2n)$。

确实,这道题我打的暴力。

首先考虑暴力sort,时间复杂度:$\Theta (m\times n\log n)$。

但是,$10^5$的数据范围显然跑不过,于是我便想到了一个并不常用的排序方法:桶排序。

这道题保证了这$n$个数是$n$的全排列,于是桶排序可行。

但是稳妥的桶排序在统计答案的时候需要扫整个区间,在$m$次询问后时间复杂度会变为$\Theta (n\times m)$,显然有不可做了。

那么我在往桶里放数的时候标记一下放进去的最大值和最小值,然后在往外拿的时候只扫描这个区间,成功卡过,甚至比某些打的不怎么优秀的线段树还要快。

码长和内存才是亮点。


代码时刻

#include<bits/stdc++.h>
using namespace std;
int a[100001],t[100001];
void change0(int l,int r)//升序
{
int maxn=0,minn=20020923,flag=l;
for(int i=l;i<=r;i++)
{
t[a[i]]=1;
minn=min(minn,a[i]);
maxn=max(maxn,a[i]);
}
for(int i=minn;i<=maxn;i++)
if(t[i])a[flag++]=i,t[i]=0;
}
void change1(int l,int r)//降序
{
int maxn=0,minn=20020923,flag=l;
for(int i=l;i<=r;i++)
{
t[a[i]]=1;
minn=min(minn,a[i]);
maxn=max(maxn,a[i]);
}
for(int i=maxn;i>=minn;i--)
if(t[i])a[flag++]=i,t[i]=0;
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
while(m--)
{
int op,l,r;
scanf("%d%d%d",&op,&l,&r);
if(op)change1(l,r);
else change0(l,r);
}
scanf("%d",&n);
printf("%d",a[n]);
return 0;
}

rp++

[BZOJ4552]:[Tjoi2016&Heoi2016]排序(桶排序)的更多相关文章

  1. 记数排序 & 桶排序 & 基数排序

    为什么要写这样滴一篇博客捏...因为一个新初一问了一道水题,结果就莫名其妙引起了战斗. 然后突然发现之前理解的桶排序并不是真正的桶排序,所以写一篇来区别下这三个十分相似的排序辣. 老年菜兔的觉醒!!! ...

  2. bzoj千题计划128:bzoj4552: [Tjoi2016&Heoi2016]排序

    http://www.lydsy.com/JudgeOnline/problem.php?id=4552 二分答案 把>=mid 的数看做1,<mid 的数看做0 这样升序.降序排列相当于 ...

  3. BZOJ4552:[TJOI2016&HEOI2016]排序(线段树,二分)

    Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他. 这个难题是这样子的:给出一个1到n的全排列,现在对这 ...

  4. BZOJ4552 Tjoi2016&Heoi2016排序 【二分+线段树】*

    Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这个 ...

  5. Python线性时间排序——桶排序、基数排序与计数排序

    1. 桶排序 1.1 范围为1-M的桶排序 如果有一个数组A,包含N个整数,值从1到M,我们可以得到一种非常快速的排序,桶排序(bucket sort).留置一个数组S,里面含有M个桶,初始化为0.然 ...

  6. python 排序 桶排序

    算法思想: 桶排序将数组分到有限数量的桶里.然后每个桶里再分别排序(使用任何算法) 当要倍排序的数组内的数值时均匀分配的时候,桶排序使用线性时间O(n) 步骤: 根据最大值.最小值.桶内数据范围设定一 ...

  7. [BZOJ4552][TJOI2016&&HEOI2016]排序(二分答案+线段树/线段树分裂与合并)

    解法一:二分答案+线段树 首先我们知道,对于一个01序列排序,用线段树维护的话可以做到单次排序复杂度仅为log级别. 这道题只有一个询问,所以离线没有意义,而一个询问让我们很自然的想到二分答案.先二分 ...

  8. BZOJ4552 [Tjoi2016&Heoi2016]排序 【二分 + 线段树】

    题目链接 BZOJ4552 题解 之前去雅礼培训做过一道题,\(O(nlogn)\)维护区间排序并能在线查询 可惜我至今不能get 但这道题有着\(O(nlog^2n)\)的离线算法 我们看到询问只有 ...

  9. [bzoj4552][Tjoi2016][Heoi2016]排序

    Description 给出一个$1$到$n$的全排列,现在对这个全排列序列进行$m$次局部排序,排序分为$2$种: $1.(0,l,r)$表示将区间$[l,r]$的数字升序排序; $2.(1,l,r ...

随机推荐

  1. linux 正则表达式 目录

    linux 通配符与正则表达式 linux 通配符 linux 正则表达式 使用grep命令 linux 扩展正则表达式 egrep linux 正则表达式 元字符

  2. Redis进阶:Redis的主从复制机制

    Redis进阶:Redis的主从复制机制 主从复制机制介绍 单机版的Redis存在性能瓶颈,Redis通过提高主从复制实现读写分离,提高了了Redis的可用性,另一方便也能实现数据在多个Redis直接 ...

  3. [官网]Prevent a worm by updating Remote Desktop Services (CVE-2019-0708)

    Prevent a worm by updating Remote Desktop Services (CVE-2019-0708) ★★★★★ https://blogs.technet.micro ...

  4. CF682C Alyona and the Tree

    题意翻译 题目描述 给你一棵树,边与节点都有权值,根节点为1,现不停删除叶子节点形成新树,问最少删掉几个点,能使得最后剩下的树内,∀v与其子树内∀u间边权的和小于点u权值 输入输出格式 输入格式: 第 ...

  5. [集合]Map

      Map集合的功能概述 a:添加功能 * V put(K key,V value):添加元素.* 如果键是第一次存储,就直接存储元素,返回null * 如果键不是第一次存在,就用值把以前的值替换掉, ...

  6. Python生成文本格式的excel\xlwt生成文本格式的excel\Python设置excel单元格格式为文本\Python excel xlwt 文本格式

    Python生成文本格式的excel\xlwt生成文本格式的excel\Python设置excel单元格格式为文本\Python excel xlwt 文本格式 解决: xlwt 中设置单元格样式主要 ...

  7. IDEA闪退问题

    这段时间经常遇到IDEA闪退的问题,在网上搜了一大堆的博客,无外乎是说让修改下面两个文件,但是改来改去没什么卵用,最后重装IDEA,一样的,没什么用.持续时间有几个月了,内心也有点崩溃,昨天下午彻底心 ...

  8. htm、html、shtml区别。(web服务器配置ssi)

    转载源:http://www.divcss5.com/html/h59.shtml 首先htm.html.shtml都是静态网页的后缀,三者也可以说都是只是扩展名不同,其他一样,都是静态的网页.Htm ...

  9. 如何在github上部署自己的前端项目

    很多时候我们想需要一个地址就可以访问自己的前端作品, 但是注册一个服务器和域名是需要花钱,很多小伙伴都不愿意, 其实这种前端静态页面github就可以帮我们预览其效果,而且只要在有网的情况下都可以访问 ...

  10. mysql常见函数及其用例

    函数调用:select 函数名(实参列表) [from 表]; 函数分类: 1.单行函数 如 concat.length.ifnull等. 2.分组函数 功能:做统计使用,又称为统计函数.聚合函数.组 ...