Scale-up and Scale-out(转载)
原地址:http://www.cnblogs.com/spork/archive/2009/12/29/1634766.html
来自原小站,曾经迷糊过的东西,表上来,希望对正在迷糊或即将迷糊的人有帮助。
谈到系统的可伸缩性,Scale-up(纵向扩展)和Scale-out(横向扩展)是两个常见的术语,对于初学者来说,很容易搞迷糊这两个概念,这里总结了一些把概念解释的比较清楚的内容。
首先来段Wikipedia的,讲的很透彻了。
Scale vertically (scale up)
To scale vertically (or scale up) means to add resources to a single node in a system, typically involving the addition of CPUs or memory to a single computer. Such vertical scaling of existing systems also enables them to leverage Virtualization technology more effectively, as it provides more resources for the hosted set of Operating system and Application modules to share.
Taking advantage of such resources can also be called “scaling up”, such as expanding the number of Apache daemon processes currently running.
Scale horizontally (scale out)
To scale horizontally (or scale out) means to add more nodes to a system, such as adding a new computer to a distributed software application. An example might be scaling out from one web server system to three.
As computer prices drop and performance continues to increase, low cost “commodity” systems can be used for high performance computing applications such as seismic analysis and biotechnology workloads that could in the past only be handled by supercomputers. Hundreds of small computers may be configured in a cluster to obtain aggregate computing power which often exceeds that of single traditional RISC processor based scientific computers. This model has further been fueled by the availability of high performance interconnects such as Myrinet and InfiniBand technologies. It has also led to demand for features such as remote maintenance and batch processing management previously not available for “commodity” systems.
The scale-out model has created an increased demand for shared data storage with very high I/O performance, especially where processing of large amounts of data is required, such as in seismic analysis. This has fueled the development of new storage technologies such as object storage devices.
------------------------------华丽的分割线---------------------------------------
英语不好?没关系,给你准备了一份中文的,来自这里,他用养鱼来做了个形象的比喻。
当你只有六七条鱼的时候, 一个小型鱼缸就够了;可是过一段时间新生了三十多条小鱼,这个小缸显然不够大了。
如果用Scale-up解决方案,那么你就需要去买一个大缸,把所有沙啊、水草啊、布景啊、加热棒、温度计都从小缸里拿出来,重新布置到大缸。这个工程可不简单哦,不是十分钟八分钟能搞得定的,尤其水草,纠在一起很难分开(不过这 跟迁移数据的工程复杂度比起来实在是毛毛雨啦,不值一提)。
那么现在换个思路,用Scale-out方案,就相当于是你在这个小缸旁边接了一个同样的小缸,两个缸联通。鱼可以自动分散到两个缸,你也就省掉了上面提到的那一系列挪沙、水草、布景等的折腾了。
Scale-up and Scale-out(转载)的更多相关文章
- 云存储的未来:Scale Up还是Scale Out?
云存储的几十年发展历程,其计算架构模型,也从Scale Up走向Scale Out.但是展望未来数字世界的海量需求,目前流行的模型还能够持续满足吗?本文通过对云存储历史的回顾,及对Scale Up ...
- 什么是Scale Up和Scale Out?
导读:Scale Out(也就是Scale horizontally)横向扩展,向外扩展 Scale Up(也就是Scale vertically)纵向扩展,向上扩展 无论是Scale Out,Sca ...
- 什么是scale up和scale out
Scale Out(也就是Scale horizontally)横向扩展,向外扩展Scale Up(也就是Scale vertically)纵向扩展,向上扩展无论是Scale Out,Scale Up ...
- 声学感知刻度(mel scale、Bark scale、ERB)与声学特征提取(MFCC、BFCC、GFCC)
梅尔刻度 梅尔刻度(Mel scale)是一种由听众判断不同频率 音高(pitch)彼此相等的感知刻度,表示人耳对等距音高(pitch)变化的感知.mel 刻度和正常频率(Hz)之间的参考点是将1 k ...
- 一种新的隐藏-显示模式诞生——css3的scale(0)到scale(1)
.dropdown-menu { background: rgba(255, 255, 255, 0.98) none repeat scroll 0 0; box-shadow: 0 1px 2 ...
- FCC---Use the CSS Transform scale Property to Scale an Element on Hover
The transform property has a variety of functions that let you scale, move, rotate, skew, etc., your ...
- 数据库sharding(scale up to scale out)
sharding是将一个大数据库按照一定规则拆分成多个小数据库的一门技术. 当我们的应用数据量越来越多,访问量越来越大的时候,我们会作何选择?继续提升数据库服务器的性能还是采用一项技术让数据库平滑扩展 ...
- 关于Azure Auto Scale的高级属性配置
Auto Sacle是一种自动化管理云服务负载的功能,系统可以根据预先制定的规则,在满足条件的情况下对计算实例的数量进行增减从而可以用来优化使用Azure的计算资源,可以适用于Cloud Servic ...
- NGUI Tween动画Scale与Transform冲突
NGUI中我们要同时完成Scale与Transform的效果,会发现动画并不是同我们想的那样运行的. 原因就是Tween Scale与Tween Transform的冲突调用. Tween Scale ...
- 重新想象 Windows 8 Store Apps (56) - 系统 UI: Scale, Snap, Orientation, High Contrast 等
[源码下载] 重新想象 Windows 8 Store Apps (56) - 系统 UI: Scale, Snap, Orientation, High Contrast 等 作者:webabcd ...
随机推荐
- login 模块,re 模块
标准三流 标准输入流:sys. stdin # input的底层 标准输出流:sys. stdout # print的底层 标准错误流:sys. stderr # 异常及loggin ...
- 小菜鸟之JAVA输入输出
Java流类图结构: 流的概念和作用 流是一组有顺序的,有起点和终点的字节集合,是对数据传输的总称或抽象.即数据在两设备间的传输称为流,流的本质是数据传输,根据数据传输特性将流抽象为各种类,方便更直观 ...
- ASP.NET Core中使用Autofac进行属性注入
一些无关紧要的废话: 作为一名双修程序员(自封的),喜欢那种使用Spring的注解形式进行依赖注入或者Unity的特性形式进行依赖注入,当然,形式大同小异,但结果都是一样的,通过属性进行依赖注入. A ...
- GitHub从小白到熟悉<四>
GitHub issue 使用教程 创建 一个issue (显示所有bug 或者 说 交流的 问题列表)
- 安装Python环境
首先我们来安装Python,Python3.5+以上即可 1.首先进入网站下载:点击打开链接(或自己输入网址https://www.python.org/downloads/),进入之后如下图,选择图 ...
- python-连接mysql实例
import pymysql # 创建连接 conn = pymysql.connect(host='192.168.71.140', port=3306, user='root', passwd=' ...
- 2种方法实现java对象的深拷贝
2种方法实现java对象的深拷贝 2017年12月03日 22:23:07 iCoding91 阅读数 4420更多 分类专栏: java 版权声明:本文为博主原创文章,遵循CC 4.0 BY-S ...
- 数据绑定-绑定Servlet内置对象
数据绑定:获取用户提交的参数,绑定到入参的参数中,就叫数据绑定. 绑定Servlet内置对象: 测试:
- java实现spark常用算子之filter
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...
- springboot(十七)-使用Docker部署springboot项目
Docker 技术发展为微服务落地提供了更加便利的环境,使用 Docker 部署 Spring Boot 其实非常简单,这篇文章我们就来简单学习下. 首先构建一个简单的 Spring Boot 项目, ...